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Structural Design of Detachable Brake System for Safe Stroller
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Safety accidents related to falls and collisions involving strollers occur every year. To address this issue, an automatic
brake system has been developed and tested for strollers. Previous systems were only functionally verified and did not
confirm structural safety until the brakes were activated and came to a stop. Given that this system is a safety-critical
device, a prototype was manufactured and tested to ensure the device's safety during brake operation. Additionally,
structural analysis was conducted using the collected data to identify potential vulnerabilities.
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Fig. 1 Structure of detachable brake system

Fig. 2 A stroller equipped with a braking system
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Fig. 3 Flow chart of brake system

Fig. 4 Prototype development
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Fig. 7 Force action on the stroller

Table 1 Properties of materials

Physical properties PVC Steel
Density (g/cm®) 1.51 7.85
Friction coefficient 0.45 0.5
Poisson’s ratio 0.37 0.3
Young’s modulus (MPa) 2726 200 x 10°
Tensile strength (MPa) 55 460
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Table 2 Total deformation

0.62834
0.62341

Maximum (mm)

Average (mm)

0.62834
062617
062401
062184
061968
061751
061535

061318
061102
0.60885 Min

Fig. 8 Total deformation
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Fig. 9 Equivalent stress

Table 3 Equivalent stress
Maximum (MPa) 0.512
Average (MPa) 1.122 x 10

Fig. 10 Part of max equivalent stress
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Phasic and Tonic Coordination among Upper-limb Muscles i
Speeds of Reaching Movement
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In the rehabilitation of upper limb function impaired by stroke, facilitating the coordinated activation of multiple muscles is
desirable. This study aims to analyze the coordination patterns of the tonic and phasic components of EMG during a
reaching task and to investigate how the phasic component changes in relation to reaching speed. The analysis focused
on the shoulder and elbow joints. EMG was recorded at five different speeds, with the slowest speed selected to represent
the tonic component. The tonic component was then removed from the total EMG at the other four speeds to extract the
phasic component. Correlation coefficients were calculated between the tonic component and joint angles, as well as
between the phasic component and joint angular accelerations. For the tonic component, as joint angle increased during
reaching, muscle activation also increased to counteract gravitational moments and enhance joint stiffness. For the phasic
component, as reaching speed increased, the correlation between acceleration-deceleration patterns and muscle activation
also increased. This suggests a greater synergistic contraction for enhanced acceleration and deceleration, as well as
increased antagonistic contraction to ensure dynamic stability during faster movements.

Manuscript received: September 12, 2024 / Revised: Novmber 9, 2024 / Accepted: November 16, 2024
This paper was presented at KSPE Spring Conference in 2024

NOMENCLATURE BL = Biceps Longhead

TL = Triceps Longhead
UPM = Upper Pectoralis Major

LPM = Lower Pectoralis Major

LD = Lattisimus Dorsi

IF = Infraspinatus 1. M2

LT = Lower Trapezius

MT = Middle Trapezius HESS AU HedR 8 HrF SAEE HEwd
UT = Upper Trapezius 2o 2[1,2] A AlAR 2 33k AP loln, FEA A=
AD = Anterior Deltoid 714 ZolE FXlth HEFOR s WAYshe thaEA ] &
MD = Middle Deltoid oo A He| Wi AshAlel &5 9 H71Ee] vl
PD = Posterior Deltoid 7b WAShE Hmbe] S0l 3,4]. ol= Q9] 4Fel Ayt ALg]

sl
AAA GE A F7HIRR, AL TS B A5
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Table 1 Subject characteristics

Characteristics Subjects (n = 8)

Age 25.73%1.73
Height [cm] 174.17+4.98
Sitting height [cm] 140.26+6.24
Arm length [cm] 76.71+4.32
Gender male

€ :EMGsensor @ :ECGsensor @ : Reflective marker

Fig. 1 EMG and ECG sensors and reflective marker attachment locations
front: UPM = Upper Pectoralis Major, LPM = Lower Pectoralis
major, AD = Anterior Deltoid, MD =Middle Deltoid, BL = Biceps
Longhead; Back: LT = Lower Trapezius, MT =Middle Trapezius,
UT =Upper Trapezius, LD = Latissimus Dorsi, IF = Infraspinatus,
PD = Posterior Deltoid, TL = Triceps Longhead
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Fig. 2 Experimental postures of reaching task. Initial (a) and final
(b) postures

ARE3te] Fig. 13} o] w@Ake] AAl o] 127]9) Ad2Ai=
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Aoz H52(UPM, LPM), 1 9l $7HEZH(AD, MD), o]
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gl S5geS AAE ¢ e 258 (Motor Point)o]l -2}

ENS LI PN
B8l A 2E sk 2dolet 715 AR
e FE5 2% (Reaching)77he 0-100%2 3}aL, S2HAILR
USB-6001 DAQ(782604-01, NI, TX)E AR&3to] 100 HzollA]

Table 2 The speed of the experimental movements instructed to the

subject.
Speed Tonic Speed 1
Reaching time Target 4 2
®) Actual 4.13+0.20 2.16:0.14
Speed Speed 2 Speed 3
Reaching time Target 1 0.5
(s) Actual 1.10£0.08 0.53+0.03
Speed Speed 4
Reaching time Target The fastest
®) Actual 0.34 +0.03
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Fig. 3 Shoulder and elbow joint angles. Solid line and gray area represent the average and SD of all subjects’ trials, respectively
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Fig. 4 Angular acceleration on the sagittal plane of shoulder joint(a)
and elbow joint(b) in different reaching speeds
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Fig. 8 Correlation between shoulder acceleration and phasic EMG
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Fig. 10 Correlation between elbow acceleration and phasic EMG
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Layer Method

HAE!, Axe

Si Seup Kim' and Ji Kwan Kim?#

1 ZZAIS|AL HIHFAA (Tebahx Co., Ltd.)

2 Aot 7| ARISAISSHE (School of Mechanical and Automotive Engineering, Gwangju University)

# Corresponding Author / E-mail: jkkim79@gwangju.ac.kr, TEL: +82-62-670-2225
ORCID: 0009-0007-6542-7856

KEYWORDS: HDPE (12t =2|0f|E&), 3D printing (3XF2 ZZIE!), Additive manufacturing (&1= HM|Zx), Extrusion module (21 2=), Process design (2 A17|)

This study aims to optimize the process conditions for high-density polyethylene (HDPE) additive manufacturing through a
systematic analysis of key variables, including material selection, layer height, feed rate, melting temperature, and bed
temperature. By exercising precise control over these variables, optimal conditions were established, which included a
melting temperature of 240°C, a welding speed of 150 cm/min, and a material throughput of 5.66 kg/h. Furthermore, the
process was refined by implementing a zig-zag layering method, which significantly improved the stability, bonding strength,
and overall mechanical properties of the final HDPE products. The effects of these optimized process conditions were
assessed through a series of mechanical tests, such as tensile tests, impact tests, and heat deflection temperature (HDT)
tests. As a result, the defined process conditions yielded excellent mechanical performance, achieving a tensile strength of
21.15 MPa, an impact strength of 320 J/m, and an HDT of 93°C. Overall, this study illustrates the enhancement of HDPE
additive manufacturing quality through the optimization of process conditions. The strategic implementation of these
optimized variables, along with advanced extrusion module design, demonstrates the potential for producing high-quality
and cost-effective HDPE products, thereby underscoring their enhanced marketability and performance potential.
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1. Introduction

Three-dimensional printing (3D printing), a representative
technology of additive manufacturing, has gained recognition as an
innovative manufacturing process in recent years. Its importance
has significantly increased across various industrial sectors [1].

In the aerospace industry, 3D printing allows the production of
lightweight, high-strength components that enhance fuel efficiency
and optimize system performance. This technology maximizes the
durability and performance of parts compared to traditional
components, thereby significantly improving the overall efficiency

of systems.

Copyright © The Korean Society for Precision Engineering

Additive manufacturing technology is also widely applied in the
medical field, where it is used to develop and manufacture customized
implants and artificial organs. Additionally, research is underway to
develop and apply wearable sensors using 3D printing technology.

Recently, 3D printing has been applied to the production of
large structures, including the construction of houses and buildings
using cement or composite materials. This technology is also
utilized in shipbuilding and the development of automotive parts,
including electric vehicles, using metal and polymer materials [2].

The process of 3D printing typically involves the use of
thermoplastic materials, which are melted and layered through a

high-temperature nozzle. In this process, polymer filaments are

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
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extruded through a heated nozzle, moved and compressed using a
screw, and then layered into the desired shape. To produce high-
quality 3D printed products, it is crucial to precisely control the
temperature in the melting zone and apply adequate pressure to the
extruded material.

However, additive manufacturing using thermoplastics like
high-density polyethylene (HDPE) presents challenges such as
shrinkage, warping, and insufficient adhesion, making it difficult to
achieve high-quality results. HDPE does not adhere well to other
surfaces and only bonds effectively to heated HDPE, leading to
reduced interlayer adhesion and potentially diminished mechanical
performance of the printed product. Additionally, the shrinkage of
HDPE during cooling can cause warping of the printed object,
negatively impacting the overall quality [3-5].

This study proposes an extrusion module that monitors and
maintains a consistent temperature and pressure in the 3D printing
nozzle. Specifically, the extrusion module is equipped with a hot
air heater that evenly heats the material, improving interlayer
adhesion and applying appropriate pressure to the extruded
material. This approach has been shown to enhance the

performance of HDPE printed products.

2. Development of Process Conditions for HDPE
Extrusion Module

2.1 HDPE Extrusion Module

The HDPE extrusion process involves heating HDPE wires or
pellets of the same material with a diameter of &3 to 6 to a
melting temperature of 210-220°C for extrusion. The process also
utilizes hot air at temperatures above 300°C and a pressure
applicator (Shoe) at the end of the extrusion nozzle to facilitate
bonding between the extruded material and the substrate.

As shown in Fig. 1, the HDPE extrusion nozzle was designed
based on HDPE extrusion welding methods and was developed to
be mounted on a manipulator. The bonding strength between the
extruded bead and the substrate determines the quality of 3D
printing. Therefore, the nozzle was designed to have a shape that
allows for the applied pressure on the extruded bead to enhance
bonding strength. To minimize thermal deformation that occurs
during the 3D printing process, the nozzle was designed to deliver
heated air in all directions using a heater. HDPE is supplied in
uniformly shaped pellets to ensure consistent melting, and the
pellet supply section was designed considering the flow of the
pellets. The extrusion capacity of the nozzle was set to discharge
more than 4 kg/h to accommodate the speed requirements of the

3D printing process. Temperature and pressure sensors are attached

Nozzle Plate

Nozzle Head

Pressure
Sensor Back Plate

Fig. 1 3D design and picture of 3D printing extrusion module

to the extrusion nozzle to measure the HDPE melting temperature
and applied pressure, enabling the monitoring and optimization of

the 3D printing process.

2.2 Analysis of Process Variables for HDPE Additive
Manufacturing

To develop the process conditions for the HDPE extrusion
module, various process variables applicable to the additive
manufacturing process using HDPE material were identified. The
process variables for 3D printing are presented in Table 1. These
process variables include material selection, layer height, feed rate,
melting temperature, and bed temperature, each of which is closely
related to the physical properties of HDPE. Since these variables
directly affect the quality and mechanical properties of the product,
it is crucial to select process conditions that are suitable for the
HDPE additive manufacturing process [6].

Through this research, the process conditions for HDPE additive
manufacturing were determined. The impact of each variable on
the HDPE additive process was observed, and process
optimization was performed to ensure high quality and
performance of HDPE-printed products.

This will secure the stability and marketability of products
manufactured using the HDPE extrusion module in the future,
reduce costs incurred during production, shorten manufacturing
times, and overall enhance the efficiency of HDPE additive

manufacturing.
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Table 1 Process variable for 3d printing

Process variable Description

Even when using the same HDPE pellets, the
properties of HDPE vary by manufacturer, so it's
important to select materials suitable for the HDPE
additive manufacturing process, along with the
appropriate melting temperature and feed rate for the
selected material [8].

(Adapted from Ref. 8 on the basis of OA)

Material

Layer height is a factor that determines the surface

quality and bonding quality of the product. It can be

controlled in the additive manufacturing process by

measuring the bead height and adjusting the Z-axis
offset.

Layer
height

The feed rate affects production time and product
quality. If the speed is too high, interlayer bonding
Feed may weaken, and if it's too low, productivity
rate decreases. Therefore, it's essential to select a feed rate
appropriate for the additive manufacturing
conditions.

Fig. 2 Determination of layer height from substrate

Table 2 HDPE additive manufacturing process conditions

The melting temperature determines whether the
material can be melted and extruded. The optimal
melting temperature varies by material; if the
temperature is too low, the material does not flow
properly, and if it's too high, the material becomes
too fluid, causing the layers to collapse.

Melting
temperature

The bed temperature ensures that the material
adheres well to the bed during the additive
manufacturing process. If the temperature is too low,
delamination may occur between the bed and the
printed product.

Bed
temperature

2.3 Selection of Layer Height in HDPE Additive Manufacturing

In 3D printing, optimizing the layer height is crucial as it
significantly influences the quality of the printed product, the
process speed, and the consistency of the output. Consequently, it
is a key variable that must be thoroughly studied to establish the
process conditions for HDPE 3D printing.

Increasing the layer height allows for the creation of products
with fewer layers, which can reduce production time and lower the
material and costs involved in the process. However, if the layer
height is set too high, it may result in decreased product density,
leading to a reduction in mechanical properties.

The key factors for controlling layer height include the distance
between the substrate and the nozzle, the extrusion rate, and the feed
rate. In this study, the layer height was observed when the distance
between the substrate and the nozzle was set to 10 mm, as shown in
the setup of the substrate and the printing nozzle in Fig. 2.

Under the specified additive manufacturing conditions, the
height of the first layer was measured at 10.79 mm, and the height

of the second layer was measured at 20.55 mm, indicating that

Melt temperature (°C) 240
Welding speed (cm/min) 150
Preheat (°C) 240
Material throughput (kg/h) 5.66

Fig. 3 Experiment of 1% and 2™ layer heights

each layer was deposited with a thickness of approximately 10 mm
as shown in Fig. 3. This confirms that the layer height can be
consistently maintained under the set process conditions as shown
in Table 2.

By measuring the height of the bead, an analysis of the bead was
conducted for the selected process conditions, and a layer height of
10 mm was chosen to facilitate the control of HDPE 3D printing.
Additionally, experiments were conducted to confirm that the layer
height remained consistent at 10 mm even during multi-layer
printing.

Based on the previously determined layer heights, an
experiment was conducted in which a single bead was repeatedly
deposited across multiple layers until the shape of each layer was
fully maintained.

The experiment showed that structural stability began to fail at
the seventh layer, making it difficult to form the bead during the
additive process. This phenomenon occurs when a single bead is

continuously deposited, leading to a decrease in cooling time
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between layers and an increase in heat accumulation. As the layer
height increases, the HDPE remains in a plasticized state due to the
heat, making it challenging to maintain the bead’s shape,
eventually hindering the additive process.

Therefore, based on the results of this experiment, it is
determined that an appropriate cooling time is necessary for
successful HDPE layering. Instead of continuously layering a
single bead, a surface layering method is likely more suitable.
Surface layering allows the bead to naturally cool as it forms the

surface, effectively maintaining the bead’s shape.

3. Design of HDPE Additive Manufacturing Process

In the previous 7-layer deposition experiment, it was observed
that when a single bead was continuously layered as shown in Fig. 4,
the layers collapsed, making it difficult to maintain a stable
deposition process. To achieve more effective layering, the HDPE
additive manufacturing process was redesigned using the zig-zag
method [10].

The zig-zag layering method is an effective approach for
covering large areas by alternating the layering direction in both
horizontal and vertical axes, gradually increasing the height of the
layers. This zig-zag method consists of Contour and Pocket layers
as shown in Fig. 5. The Contour serves as a guide to prevent the
molten resin within the Pocket from flowing outward, thereby
enhancing stability during the layering process and allowing for the
construction of taller structures with ease. Additionally, the zig-zag
layering path ensures the density of the printed product, making it a
suitable design path for the additive manufacturing of large-scale
structures.

Overlap refers to the intersection between the first bead and the
second bead. By controlling the overlap, the bonding strength
between beads can be enhanced. Since the beads are circular, if the
overlap distance is too large, gaps may form between beads,
potentially compromising the mechanical properties of the printed
product. Conversely, if the overlap distance is too small, the process
time may increase, and excessive overlapping of beads may lead to
warping, thereby reducing dimensional accuracy. Therefore,
maintaining a consistent overlap distance is crucial. In this study, a
7mm overlap distance was utilized, as illustrated in Fig. 6. The
manufacturing of larger components inherently introduces greater
complexity in terms of system configuration, automation, and
control mechanisms. To address these challenges, various innovative
machine concepts have been developed, including systems
incorporating robotic arms. A robotic arm system exemplifies a

solution that integrates flexible and cost-effective industrial robots.

7Layer : 64 .3mm

Fig. 4 7-Layer single bead deposition
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Fig. 6 Schematic diagram of bead formation in layering

The authors conducted an evaluation of this manufacturing
technology, focusing on the system architecture and motion planning

to optimize performance and ensure precision [11].

4. Experimental and Discussion

4.1 Single Layer Additive Manufacturing Process Test

In the single layer additive manufacturing process, an issue of
over-deposition of the bead was observed at points where the zig-
zag direction changes as shown in Fig. 7.

This over-deposition likely occurs because the extrusion nozzle

remains at one point for a longer duration as the direction changes,
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120cm/min 150cm/min 200cm/min

Fig. 8 Changes in extrusion shape depending on speed

Fig. 9 Delamination occurrence depending on pre-heat temperature
of the substrate

leading to an increase in material deposition at that spot.
To address this problem, the feed rate at the points where direction
changes should be increased, which would reduce the amount of
material deposited and prevent over-deposition in those areas. It
was observed that increasing the feed rate along the path where the
direction changes resulted in a reduction in the amount of over-
deposition as shown in Fig. 8. When the feed rate was set to
200 cm/min, no over-deposition occurred, and the layers were
successfully deposited without any issues.

In the single layer additive manufacturing process, delamination
was observed between the substrate and the bead as shown in
Fig. 9. This delamination is likely due to insufficient melting of the
substrate, which weakens the bonding strength between the
substrate and the bead, leading to separation.

While increasing the preheat temperature of the substrate can
enhance bonding, other methods such as reducing the feed rate,
decreasing the distance between the substrate and the nozzle, or

increasing the heater temperature are also possible solutions.

Table 3 Process conditions for 3D printing

Melt temperature (°C) 240 Nozzle-Base Distance 10
(mm)

Contour welding speed
(cm/min)

First layer preheat (°C) 280

Welding speed (cm/min) 150 200

Preheat (°C) 240
Material throughput (kg/h)  5.66

Overlap (mm) 7

Fig. 10 Picture of the HDPE additive manufacturing process

However, reducing the feed rate or the distance between the
substrate and the nozzle can affect other process conditions. To
avoid these complications, it is recommended to increase the
preheat temperature only during the deposition of the first layer to
ensure strong bonding between the substrate and the bead, thereby

preventing delamination.

4.2 Multi-layer Additive Manufacturing Process Test

The evaluation was conducted on the layered product created using
the HDPE extrusion module under the process conditions shown in
Table 3, and the HDPE additive manufacturing process is shown in
Fig. 10. The dimensions of the product, including width, length, and
height, were measured and compared to the designed specifications.
The designed dimensions of the product were 170 x 170 x 40 mm,

but the actual measured dimensions were 180 x 180 x 40.7 mm.
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Fig. 11 Picture of HDPE specimens from additive manufacturing

Although the design specified a width and length of 170 mm,
this did not account for the width of the bead. Since the layering
path follows the center of the bead, an additional 5 mm on each
side (half of the bead width) resulted in a total layered dimension
of 180 mm.

Therefore, to achieve the intended 170 mm dimension, the
design should set the width and length to 160 mm, considering the
bead width. This discrepancy arises when the bead width is
consistently layered, and this error indicates that the layering
process was executed correctly. The layered height was based on a
4-layer structure, with a measured height of 40.7 mm as shown in
Fig. 11. This indicates that the beads maintained their shape during
the layering process and formed the intended surface.

Additionally, it was observed that uneven beads were formed at
the initial stage of the layering process. This phenomenon can be
attributed to the findings from the temperature measurement results
of the extrusion process in this study. Specifically, the temperature
of the molten HDPE resin was observed to rise rapidly during the
first 6 seconds after extrusion began, before stabilizing. Therefore,
it is believed that the temperature of the HDPE at the beginning of
the layering process was not stabilized, leading to the formation of

uneven beads.

4.3 Single Layer Additive Manufacturing Process Test
4.3.1 Tensile Test of HDPE

To ensure the quality of HDPE from additive manufacturing,
mechanical property evaluations are essential. These evaluations
typically involve tensile tests and impact tests, which are
commonly utilized in the assessment of polymers. For the
evaluation of HDPE from additive manufacturing, test specimens
for both tensile and impact tests were extracted from the HDPE-
printed surface.

To prepare these specimens, the top surface of the additive
manufacturing output was flattened through a facing process, and
then the specimens were cut to the required dimensions using
precision machining techniques as shown in Fig. 12.

The tensile test on the additive manufacturing output was
conducted in accordance with ASTM D 638 standards. The test

was performed at a speed of 50 mm/min, with a distance of 65 mm

Fig. 12 Picture of HDPE specimens for tensile test
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Fig. 13 Tensile test results of HDPE specimens

between the grips. The gauge length was set to 25 mm, and a 30 N
load cell was used to measure the force during the testing process.

The results of two tensile tests were measured as follows: 20.7
in the first test, 21.6 in the second test, 20.46 MPa in the third test.
The average tensile strength was calculated to be 20.92 MPa as
shown in Fig. 13. The elongation at break was measured as 33.3 in
the first test, 37.1% in the second test. The first and second tests
were conducted on specimens in the longitudinal direction, while
the third test was performed on a specimen in the transverse
direction. The zigzag layer method was applied to fabricate the
additive-manufactured HDPE, and it was observed that the
material properties were consistent regardless of the orientation.
Considering that the tensile strength of the additive-manufactured
HDPE falls within the normal range, as the tensile strength of
HDPE is typically above 20 MPa.

4.3.2 Impact Test of HDPE

The impact test of HDPE from additive manufacturing was
conducted using the Izod impact test according to ASTM D256
standards as shown in Fig. 14. The impact test specimens were

notched to induce stress concentration when an impact occurs,
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Fig. 14 Picture of HDPE specimens for impact test
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Fig. 15 Picture of HDPE specimens for HDT test

facilitating fracture and allowing the material's impact strength to
be evaluated with a lower impact force. The impact test results
showed a measurement of 355 J/m in the first test and 284 J/m in

the second test, with an average impact strength of 320 J/m.

4.3.3 Heat Deflection Temperature (HDT) Test of HDPE

The heat deflection temperature (HDT) evaluation is used to
determine how much thermal load a polymer material can
withstand at a given temperature, which is particularly important
for assessing the thermal performance of the material. This test
measures the extent of deformation that occurs when the material
is subjected to mechanical stress at a specific temperature. The test
was conducted in accordance with ASTM D648 standards as
shown Fig. 15.

The test results showed that thermal deformation began to occur
at 93°C, which is higher than the heat deflection temperature of pure
HDPE, which is 60°C. This indicates that the material's properties
were enhanced through the additive manufacturing process.

The mechanical properties of the additive manufacturing
outputs produced with the HDPE-specific extrusion module were
evaluated through physical property tests, and it was confirmed
that the performance of all specimens was improved compared to
pure HDPE material. Therefore, it is believed that the additive
manufacturing process proposed in this study effectively improves

the properties of HDPE material.

5. Conclusions

In this study, optimal process conditions for HDPE additive

manufacturing were established by analyzing critical variables

such as material selection, layer height, feed rate, melting
temperature, and bed temperature. As a result, the optimal process
conditions were determined to include a melting temperature of
240°C, a welding speed of 150 cm/min, and a material throughput
of 5.66 kg/h. Additionally, optimizing the layer height at 10 mm
played a crucial role in ensuring stability and consistency during
the multi-layer 3D printing process. The adoption of a zig-zag
layering method further improved the process design, contributing
to the stability, bonding strength, and overall mechanical properties
of the final product.

These derived process conditions directly contributed to the
successful mechanical performance of HDPE products. By
optimizing parameters such as melting temperature and feed
rate, strong interlayer adhesion was achieved, reducing defects
like warping and delamination. In particular, the redesigned
process with the zig-zag layering method helped maintain bead
shape and structural integrity, allowing for the production of
taller and more complex structures without compromising
quality.

Such process optimizations played a significant role in
improving tensile strength, impact strength, and heat deflection
temperature, confirming that the derived process enhances the
material properties of HDPE in additive manufacturing. The
average tensile strength of the additively manufactured HDPE was
found to be 21.15 MPa, with an average elongation at break of
35.2%. Additionally, the average impact strength measured during
impact testing was 320 J/m. The heat deflection temperature
(HDT) test showed that thermal deformation of HDPE began at
93°C, indicating that the mechanical and chemical properties of
HDPE were improved through optimized process conditions and
additive manufacturing.

The successful outcomes of this study were largely due to the
precise control of process conditions and the innovative design
of the extrusion module, which significantly enhanced the
quality, stability, and performance of HDPE additive
manufacturing products. The effective derivation and
implementation of process conditions, along with strategic
design improvements, are expected to play a crucial role in
achieving high-quality HDPE products with excellent market

potential and cost efficiency.
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This study focuses on preventing folding defects in the forging process of parachute harness parts. Through three-
dimensional finite element analysis, it was determined that folding defects arise from uneven metal flow and timing
differences in the filling of various regions. To address these issues, a preform die was designed and evaluated using
multi-stage forging simulations. The results indicated that the preform die facilitated uniform metal flow, preventing folding
defects and ensuring consistent filling across all key areas. To verify the simulation results, surface and cross-sectional
metal flow analyses were conducted. Additionally, the preform die reduced the maximum die load, which is expected to
extend die lifespan and improve overall process efficiency. These findings demonstrate that precise control of metal flow
and the application of a preform die can significantly enhance the quality and durability of forged components, providing
valuable insights for improving forging processes across various industries.
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1. Introduction

Hot forging is a process that shapes heated material by
plastically deforming it using a die. After forming, the material
conforms to the die’s shape, resulting in superior structural strength
due to improved metal flow compared to other methods [1]. This
enhanced strength makes hot forging suitable for components
requiring high reliability under extreme conditions, such as
aerospace applications [2,3].

Parachute harness parts in the aerospace field are produced by

forging to ensure their durability and reliability. When a parachute

Copyright © The Korean Society for Precision Engineering

deploys and descends, various loads including tension, impact, and
compression forces occur simultaneously and can be quite
substantial. As these harness parts play a critical role in supporting
the stable deployment and descent of the parachute, it is essential
to utilize a high-quality forging process to maintain structural
strength under these diverse load conditions [4,5].

Defects that degrade quality in the forging process include folding
defects, which cause stress concentrations in the parts and reduce
strength and fatigue life [6]. The causes of folding defects can occur
during the metal flow merging from multiple directions, when the flow

speed of the metal varies across different areas of the die cavity, or due

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
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to deterioration in the surface quality of the initial billet [7].

To address these folding defects, solutions can be implemented
such as designing a preform die, making localized modifications to
existing dies, or adjusting process parameters [8,9]. However, the
selection and implementation of these methods depend on the
designer's experience and trial and error, which can be costly and
inefficient. Folding defects primarily occur in plastic deformation
processes like forging, which are performed under large loads and
complex stress states, and where significant variations in strain and
stress distribution occur. Because of this, research using finite
element analysis (FEA) is actively conducted to identify the causes
of defects and develop solutions [10,11]. Finite element analysis
can accurately predict folding defects and metal flow during the
forging process [12].

Analysis through metal flow prediction is typically conducted
using two-dimensional symmetric analysis under plane strain and
axisymmetric conditions [13,14]. While two-dimensional metal
flow lines allow for the observation and analysis of metal flow in
the cross-sections of cut products, the complex shapes of harness
parts and their dies with irregular flows necessitate three-
dimensional metal flow line analysis. Three-dimensional flow lines
can be generated and predicted on the surfaces and cross-sections
of metal materials. Surface metal flow lines help identify folding
defects through irregularities or breaks in the lines, and flow lines
on cross-sections can reveal the depth of internal folding defects.

In this study, DEFORM-3D, an FEA software, was utilized to
analyze folding defect causes and explore solutions [12]. Forming
analysis was conducted on circular initial billet and forging dies to
observe metal flow during the process, and flow patterns were
examined to assess folding defects. Based on simulation results, a
preform die was designed to minimize defect formation, and multi-
stage forging analysis was performed to verify its effectiveness.
Design validity was evaluated through simulation outcomes,
followed by prototype production, and observed metal flow
patterns in the specimen were compared with simulation

predictions to confirm design adequacy.

2. Current Forging Process of Harness Parts

The current forging process for harness parts includes Ist
forging, trimming, annealing, and 2nd and 3rd forging stages, as
shown in Fig. 1. These three-stage forging dies were manufactured
with cavities identical in dimensions and shape to the final product.

The 1st forging is carried out through hot forging, with a gap of
1.5 mm set between the upper and lower dies. This gap ensures

proper volume distribution of the material to prevent defects such

1st Forging(hot)
2nd Forging(hot)

3rd Forging(cold)

Fig. 1 The current forging process for harness parts
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Fig. 2 Forging die design: (a) 1st forging die and (b) 2nd and 3rd
forging die

as folding, underfill, and overloading in subsequent processes.
Material pushed outside the die cavity during forming is called
flash, which is removed during the trimming process. Annealing is
conducted to remove internal stresses caused by hot forging and
trimming, enhancing forgeability. 2nd forging is also carried out
through hot forging, shaping to the final dimensions with a die gap
of 1.2 mm. This gap compensates for the metal shrinkage and
oxide scale that occur after hot forging, which can reduce surface
quality and dimensional accuracy. The final step, 3rd forging, is the
sizing stage completed at room temperature to finalize the shape,
correcting any shrinkage and surface defects from the previous hot
forging, thus ensuring the final product quality.

Gutter designs have been applied to the 2nd and 3rd forging dies
to minimize the excessive load caused by flash, as illustrated in

Fig. 2. Figs. 2(a) shows the 1st forging die, while 2(b) represents
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the 2nd and 3rd forging dies. The hot forging die material is QHZ,
a high-speed tool steel that maintains hardness and heat resistance
even at high temperatures, allowing for forging. The cold forging
die material is QCMS, which requires high strength and toughness
in cold forging, offering better wear resistance and toughness than
the carbon tool steel SKD11. The equipment used is a crank-type
mechanical press with a permissible load of 1,000 tons. The
material is SCM440, an alloy steel containing chromium and

molybdenum.

3. Analysis of the Current Forging Process

3.1 Defect Analysis in 1st Forging

In 1st forging, basic shaping is performed to properly distribute
the volume and prevent defects that may occur during final forming.
To review the process, a single forging was conducted at 70% of the
forming conditions with the 1st forging die and initial billet, and the
results are shown in Fig. 3. Harness parts are categorized into hook,
neck, and snap sections. Upon inspecting the 1st forged product,
folding defects were identified in the snap, which led to the defects
being magnified and analyzed through image processing. The
folding defects occurred at two points in the snap: Folding A
occurred horizontally at the boundary between the filled and unfilled
areas, while Folding B occurred vertically in the unfilled area.

Fig. 3 illustrates that defects occurred even before the forming
process was complete, highlighting the need for a comprehensive
analysis of the entire process, including the final stage. To
determine the causes of these folding defects and propose
solutions, FEA was conducted using DEFORM-3D.

3.2 Conditions for the 1st Forging FEA

A three-dimensional analysis was conducted to examine the
characteristics of volumetric forming and the irregular metal flow
occurring during the forging process. Fig. 4 illustrates the position
of the 1st forging die and the initial billet. The material, produced
through extrusion, is cylindrical, with a diameter of 25 mm and a
length of 120 mm. Choi demonstrated that temperature minimally
affects metal flow prediction in forging processes. This study
applied isothermal analysis to minimize temperature variation
effects on metal flow [15]. The parameters used in the analysis
reflect actual process data and are summarized in Table 1.
Maximum stroke denotes the equipment’s maximum allowable
stroke, while forging stroke specifies the amount of deformation
applied during the 1st forging process. The friction model utilized
shear friction, effectively representing the high temperatures and

plastic deformations of forging process [16].

=
Folding B [ -
R g R

i

Fig. 3 Prototype produced by 1st forging

Initial billet |

Forging_’ 120 mm
die f 1
25 mm
Fig. 4 Die and initial billet position for 1st forging
Table 1 Parameters of simulation
Parameters Value
Friction factor 0.3
Maximum stroke 220 mm
Forging stroke 23.5 mm
Average punch velocity 318 mm/sec
Number of mesh elements for billet 110,000
Die temperature 400 °C
Initial billet temperature 900 °C

3.3 Results of Analysis

The cavity in the center of the die begins to fill first due to the
position of the die and the initial billet. Then, the material moves
towards the snap through the compression of the die, completing
the filling and forming process. The results of the Ist forging
analysis are shown in Fig. 5. Fig. 5(a) shows the stage of forming
where folding defects were found, with Folding A and B being
identical to those in the initial product, and their positions and
shapes matching. To view the surface metal flow prediction,

surface metal flow lines were generated on the initial billet, as
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Fig. 5 1st forging simulation results: (a) Folding defects during

forming, (b) Surface metal flow of the initial billet, and (c)
Folding defects predicted by surface metal flow analysis

(@) (b) (c)

Fig. 6 Cross-sectional metal flow prediction results: (a) Cross-
sectional metal flow of initial billet, (b) Simulation results,
and (c) Cross-sectional metal flow of folding defect

shown in Fig. 5(b). Fig. 5(c) shows the predicted metal flow at the
completion of the 1st forging. Folding defects were also confirmed
through the metal flow prediction at the point of completed
forming. The surface length of Folding A is approximately 7 mm,
and Folding B is approximately 12 mm.

To confirm the internal metal flow and folding depth of the snap
where folding defects occurred, the cross-sectional metal flows
were predicted and analyzed. The results are shown in Fig. 6. As
shown in Fig. 6(a), metal flows were generated on the cross-
section of the right side of the initial billet, and the predicted cross-
sectional metal flows at the completion of the forging process are
shown in Fig. 6(b). Fig. 6(c) provides a side view of the snap
where surface folding defects were observed in Fig. 5, and internal
folding defects were confirmed through the cross-sectional metal
flows. The internal metal flow of the 1st forged part was examined,
and a folding depth of 2 mm was found.

Fig. 7 shows the stress concentration occurring in the folding
area as the folding defect progressed, with a maximum effective
stress of 454 MPa. This stress concentration renders the part
susceptible to fatigue failure and can reduce the lifespan of the

component under repeated loading conditions.

Effective stress(Mpa)
500

400

Fig. 7 Effective stress concentration due to folding defect

progression
Filled neck
Filling hook |
T i
Filled neck 7 - ﬁ
Unfilled snap Unfilled snap
(@) (b)

Fig. 8 Formed to a state of 17 mm: (a) Top view and (b) Side view

3.4 Causes of Folding Defects

To determine the primary cause of folding defects observed in
the 1st forging simulation, the forming process was analyzed in
detail. Fig. 8 shows the material state after compressing 17 mm out
of a total 23.8 mm press stroke. Figs. 8(a) presents a top view,
while 8(b) shows a side view for clearer understanding. At this
stage, the hook, with a larger die cavity volume, is still filling,
whereas the neck, with a smaller cavity volume, has already filled
completely. In Fig. 8(a), the snap section has not begun filling, as
there is still a gap between the snap and the initial billet.
Additionally, Fig. 8(b) shows a 2.3 mm difference in level between
the neck and the snap, resulting from their differing filling states.

To understand how the differences in filling progress and resulting
level differences contribute to folding defect formation, Fig. 9
illustrates the forming process from the appearance of the level
difference to the identification of the folding defect. Fig. 9(a) shows
the state after 17 mm of forming, with the neck section fully filled.
As the press continues, the flash moves toward the snap section.
Fig. 9(b) illustrates the state after 19 mm of forming, where the flash
is pushed into the snap cavity by the compressive force of the press.
In Figs. 9(a), the flash displays only lateral flow, but in 9(b), the snap
cavity offers more space, resulting in additional longitudinal flow.
Fig. 9(c) shows the state after 20 mm of forming, where the snap
section begins to fill, driven by both the flash and the metal flow
from the already filled neck section. At this stage, a boundary
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Fig. 9 Front view until detection of snap folding defect: (a) Forming
stroke 17 mm, (b) Forming stroke 19 mm, (c) Forming stroke
20 mm, and (d) Forming stroke 22 mm

between filled and unfilled areas appears in the snap section, leading
to the formation of Folding A. Fig. 9(d) depicts the state after 22 mm
of forming, where the snap section fills from two different areas. The
flash filling observed in Figs. 9(b) and 9(c), driven by both lateral
and longitudinal metal flow, results in the filling shown in 9(d). This
difference in filling degree between the inner and outer regions of the
snap section leads to the formation of Folding B. Forming process
analysis confirmed that the primary cause of folding defects is the

difference in forming progress between the neck and snap sections.

4. Design and Verification of the Preform Die

4.1 Preform Die Design

To address the two long, deep folding defects identified in the
existing 1st forging die, a preform die was designed to improve
timing differences across sections, replacing the existing 1st
forging process. The improved forging process, shown in Fig. 10,
meets the objectives of the existing 1st forging while preventing
folding defects. Additionally, the existing 2nd and 3rd forging
processes were reordered as the 1st and 2nd forging stages,
respectively. This adjustment retains the total number of processes
while enhancing overall quality and performance.

The preform die must meet the following conditions: First, the ratio
of material diameter to length must not exceed 2.3 to prevent buckling
during preforming [17]. Exceeding this ratio can cause buckling

during forming, compromising structural stability. To prevent

Preform(hot)

1st Forging(hot)

2nd Forging(cold)

Fig. 10 Improved forging process for harness parts

buckling, it is essential that the initial billet required to form the hook
remains undeformed. Second, the preform die must meet preforming
requirements for the snap section. Third, the preformed part must be
free of folding defects to ensure the final product’s quality. The
preform die design must be precise to satisfy these conditions.

The preform die was designed by analyzing the characteristics of
the upsetting and heading processes. In the conventional process, the
material is compressed lying flat, but in the preforming process, it is
compressed upright, enabling the upper die to preform the snap while
the material in the lower die retains its original shape. Typically, in the
upsetting process, an unshaped upper die compresses the initial billet,
causing expansion in the radial direction. However, since the snap’s
center is hollow, the material expands bilaterally as the upper die
compresses, with the die designed to leave the center unfilled. This
design enables the material needed for the snap to expand, completing
its preformed shape. The upper and lower dies were designed with a
diameter-to-length ratio of 2.2 to ensure stability against buckling.

Fig. 11 shows the cross-sections of two types of improved
preform dies. Figs. 11(a) and 11(b) represent the cross-sections of
Case 1, while 11(c) and 11(d) represent those of Case 2. The Case
1 die was designed to closely approximate the final product
dimensions, but due to the nature of semi-closed forging, it does
not achieve complete filling at the end of the forming process. This
design considers the limitations of the forging equipment, which
does not allow for automatic ejection, and any insufficient forming
can be compensated through additional forging in the subsequent
process. In contrast, the Case 2 die was designed with less
deformation compared to Case 1, following the characteristics of a
typical closed-die forging process, and was intended to achieve
complete filling at the end of forming. A 1-degree expansion angle
was added to the center of the lower die cavity for easier product
removal. The key dimensions are presented in Table 2. Multi-stage
forging simulations, including preforming and 2nd forging for both
Cases 1 and 2 dies, were conducted, and the results were compared

to select the preform die that produced the best outcome.
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Fig. 11 Shape of the preform die: (a) Front view of Case 1, (b) Side
view of Case 1, (c) Front view of Case 2, and (d) Side view
of Case 2

Table 2 Comparison of key dimensions between Cases

Design parameters Final product Case 1 Case 2
A [mm] 432 41 204
B [mm] 64.3 65.5 56
C [mm] 28.5 28 18.4

4.2 Conditions of Multi-stage Forging Analysis

To assess the effectiveness of the preform dies, a multi-stage
forging analysis was conducted. Multi-stage forging analysis
evaluates the forging process by forming a product through
multiple dies using a single material. The analysis followed the
sequence of preforming, trimming, and Ist forging stages. The
preform die strokes were set to 41 mm for Case 1 and 45 mm for
Case 2, reflecting structural differences. The 1st forging stroke was
set at 23.8 mm. Apart from the forming stroke, parameters like the
friction coefficient, maximum stroke, and stroke speed matched

the conditions in Table 1.

4.3 Results of Analysis

Fig. 12 presents the forming results of the initial billet with the
designed preform dies. Figs. 12(a) and 12(b) depict the before and
after states for Case 1, while 12(c) and 12(d) show the
corresponding states for Case 2. The initial billet was compressed

by the upper die, reflecting characteristics of the upsetting and

Upper die
Flash
Free for
Lower die
Case 1
(@) (b)
Upper die
p? ' Flash
Lower die
Case 2
(c) (@

Fig. 12 Preform results: (a) Before preform of Case 1, (b) After
preform of Case 1, (c) Before preform of Case 2, and (d)
After preform of Case 2

heading processes, which increased its diameter. The expanded
billet then moved into the snap cavity of the preform lower die,
completing filling and forming. Any unformed flash was extruded
outside the die cavity. Due to differences between the Cases 1 and
2 dies, the shape of the extruded flash varied. The Case 1 die
exhibited semi-closed forging characteristics, maintaining critical
snap dimensions while leaving other areas uncontrolled by the die
cavity. In contrast, the Case 2 die followed the closed-die forging
method, filling all areas within the die cavity and fully controlling
metal flow.

The analysis of the 1st forging process was performed following
preforming and trimming, and the results for both cases are shown
in Fig. 13. Figs. 13(a) and 13(b) display the results before and after
the 1st forging process for Case 1, whereas 13(c) and 13(d) present
the corresponding results for Case 2. was performed after aligning
the preformed part with the die cavity. The gutter design of the
forging die resulted in folding and flash formation at the snap and
neck shear areas, as shown in Figs. 13(b) and 13(d). The flash

shape varied owing to differences in the preform die specifications.
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Fig. 13 1st forging results: (a) Before 1st forging of Case 1, (b) After
Ist forging of Case 1, (c) Before 1st forging of Case 2, and
(d) After 1st forging of Case 2

This flash will be removed by trimming before the cold forging
stage.

To confirm simultaneous formation of all areas hook, neck, and
snap as required by the preform die design, the forming state at a
17 mm stroke, where a material step was observed in Fig. 8, was
compared and displayed in Fig. 14. Figs. 14(a) presents the
forming result for Case 1, and 14(b) shows that for Case 2. Both
preform die designs indicate that filling began simultaneously
across all areas. However, while snap filling was completed in
Case 1, it remained in progress in Case 2.

Finally, die load for the two preform die cases was compared.
Die load has a significant effect on die lifespan and the quality of
the forged product. Excessive load can reduce die lifespan,
necessitating more frequent replacements and negatively affecting
productivity. Fig. 15 displays the load results for the two cases. The
maximum load measured in Case 1 was 94 tons, while in Case 2, it
reached 283 tons. Die load in Case 1 was about one-third lower, as
the Case 1 die had semi-closed characteristics, preventing complete
filling of the die cavity. Conversely, the Case 2 die was a closed
die, designed to ensure full cavity filling by the billet. Additionally,
the Case 1 die was designed to minimize extra contact and
resistance from the flash, avoiding major increases in die load. In
contrast, in Case 2, the upper die continued compressing the flash
after expulsion, causing additional deformation. This increased the
contact area between the die and material, leading to higher

resistance and a rise in die load.

Filled neck Filled neck

— e )

JP\__/J
filled snap filling snap

(a) (®
Fig. 14 Comparison of forming states at a 17 mm stroke for both

preform die designs: (a) Case 1, and (b) Case 2

0 Comparison of load for Case 1 and Case 2

300
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Load (ton)
w0
S

94

Step

Fig. 15 Comparison of die load for Case 1 and Case 2

As a result of comparing the two dies, the Case 1 die was selected
as the preform die due to its advantages of achieving a shape closer
to the final form, promoting smoother metal flow, and exhibiting
lower die load, which can improve die lifespan and productivity.

An analysis of the effective stress flow in the folding sections
was conducted to quantitatively compare the selected die with an
existing die. However, because the preform die and the existing 1st
forging die differ structurally, a direct comparison of the effective
stress flow may not be reliable. To address this, we utilized the
process characteristic in which the cavity shapes and dimensions of
the existing 1st and 2nd forging dies are identical. The formed state
of the existing 1st forging die is dimensionally and geometrically
identical to the state achieved after the preforming and 1st forging,
allowing for a reliable comparison of the maximum effective stress
in the effective stress flow. The comparison results are shown in
Fig. 16. The maximum value of the effective stress flow after the
improvement was reduced to 312 MPa, which represents a

decrease of approximately 31.3%.

5. Metal Flow Analysis in the Improved Forging Process

To observe the presence of folding defects in the formed parts

with the preform die, multi-stage forging process analysis and

three-dimensional metal flow predictions were conducted, and the
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Fig. 16 Comparison of effective stress behavior

Removed
flash

Fig. 17 Predicted metal flow and folding defect FEA in multi-stage
forging: (a) Cross-sectional metal flow lines in the preform
stage after trimming, (b) Metal flow lines in the 1st forging
stage, (c) Predicted surface metal flow lines, and (d) 3D
cross-sectional metal flow lines in the snap section

results are shown in Fig. 17. Fig. 17(a) illustrates the predicted
cross-sectional metal flow lines on the snap after trimming to
remove the flash following the preforming. Fig. 17(b) presents the
forming and metal flow predictions up to the 1st forging step. Most
of the metal flow lines generated during the preforming moved into
the flash region. Figs. 17(c) shows the predicted surface metal flow
lines, where the folding defects observed in 5(c) were reduced,
indicating a smoother metal flow, consistent with the cross-
sectional metal flow in Fig. 17(b). Fig. 17(d) shows the three-
dimensional cross-sectional metal flow within the snap, including
the metal flow information in the thickness direction. The two
sections without identifiable metal flow lines are shown in Fig.

17(d). Section A corresponds to the shear section of the snap,

(a)

Fig. 18 Specimen production in multi-stage process: (a) After
preform, (b) After forging, and (c) After trimming

where, as shown in the enlarged view in Fig. 17(b), the cross-
sectional metal flow lines do not extend to the shear section, but
instead move into the flash region, resulting in no visible metal
flow lines in Section A. Section B corresponds to the metal flow
lines formed within the flash during the forming process, which
were removed to improve the visibility of the metal flow within the
snap. Cross-sectional metal flow predictions confirmed a smooth
metal flow with the application of the preform die, and no folding
defects were observed.

Fig. 18 shows the prototype manufacturing process of the multi-
stage process using the preform die and the Ist forging die. Fig.
18(a) shows the preformed part after the 1st process. The preform
die satisfied the design criteria, and buckling did not occur during
the forming process. In addition, the preformed shape of the snap
matched the analysis results. Fig. 18(b) shows the forged part
formed using the 1st forging die on the preformed part. Fig. 18(c)
shows the prototype after trimming the forged part. Through
preforming, simultaneous forming of all areas in the Ist forging
process was achieved, and no folding defects were observed on the
surface of the prototype, confirming that the preform die met the
intended design criteria.

To verify the results of the metal flow analysis, a metal flow
experiment was conducted using a prototype specimen. First, the
snap of the specimen was cut vertically through the center to obtain
a cross-sectional sample of the snap. Contaminants on the surface
of the cut section were removed during the cutting process. The
etchant was prepared using distilled water and hydrochloric acid at
a 1:1 ratio. The temperature of the etchant was maintained at 80 °C
and the specimen was immersed for 30 min for etching. After
etching, the specimen was rinsed with distilled water and dried to
observe the cross-sectional surface. A comparison of the metal
flow experiment and the analysis results is shown in Fig. 19. The
results indicated a metal flow similar to the predicted metal flow,
with no folding defects. This provides important evidence
supporting the validity of die design and demonstrates that

analysis-based predictions are reliable in actual processes.



February 2025 /137

Fig. 19 Comparison of metal flow experiment and prediction
results

6. Conclusion

This study presented various approaches to prevent folding
defects that occur in the forging process. The research results can
be summarized as follows:

(1) Through three-dimensional finite element analysis, it was
confirmed that folding defects arise from differences in material
levels and the resulting uneven filling times. This highlights the
necessity for precise analysis of metal flow to address folding
defects in the forging process.

(2) A preform die was designed to prevent folding defects.
Multi-stage forging analysis using the preform die confirmed that
filling occurred simultaneously in all areas of the die,
demonstrating that the preform die effectively prevents folding
defects.

(3) After applying the preform die, the surface folding defects
of 12 and 7 mm and a depth of 2 mm in the snap area were
improved, and the resulting effective stress was reduced by
approximately 31.3%. The final product demonstrated superior
structural strength and durability compared to the conventional
process.

(4) The metal flow experiment confirmed that the folding
defects were improved and that the metal flow path was consistent
with the simulation results. This proves that the simulation results
are reliable in actual product manufacturing.

This study emphasizes the necessity of preform die design to
address folding defects, demonstrating that stable and high-
strength products can be manufactured. These findings are
expected to contribute to quality improvements in forging
processes across various industries, including aerospace

components.
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In this study, we propose a deep learning-based method for large-area inspection aimed at the high-speed detection of
micro hole diameters. Micro holes are detected and stored in large images using YOLOvS8, an object detection model. A
super-resolution technique utilizing ESRGAN, an adversarial neural network, is applied to images of small micro holes,
enhancing them to high resolution before measuring their diameters through image processing. When comparing the
diameters measured after 8x super-resolution with the results from existing inspection equipment, the average error rate is
remarkably low at 0.504%. The time taken to measure an image of one micro hole is 0.470 seconds, which is ten times
faster than previous inspection methods. These results can significantly contribute to high-speed measurement and quality

improvement through deep leamning.
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Table 1 Comparison of measured diameter

Mean Standard dev.  Mean error rate

[mm] [mm] (%]
Measured diameter 454.5 0.508 -
Estimated diameter 4544 0.634 0.151
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Numerical Study on Design Approaches for Reduction of Float and
Elimination of Over-constraints in Hole-pin Pattern Assembly
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KEYWORDS: Hole-pin pattern assembly (2 -EI IHE Z=2!), Part float (= £=), Tolerance analysis (2X}5H4Ad),
Tolerance design (ZxH37|), Proper/Exact constraint (K4ZX|2F), Over-constraint (2}IK|2F)

This paper addresses the issue of over-constrained assembly in mechanical designs using hole-pin patterns. When two
hole-pin pairs are used, they can cause interference between components, leading to assembly failures. To mitigate this,
designers often enlarge holes relative to pins to have a large float. However, when functional requirements do not permit
significant float, field design engineers tend to add more assembly features, hoping them to mutually limit the float allowed
by others. This numerical study employed two commercial tolerance analysis programs to demonstrate that these design
changes could not sufficiently reduce float to justify added costs. Instead, this paper proposed an exactly-constrained design by
replacing one of the holes with an elongated hole. Numerical analysis showed that this approach significantly reduced float
compared to current design practices. This paper logically explains why this must be the case. It is hoped that this study
contributes to the advancement of mechanical assembly design practices by adopting the exact constraint concept.
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NOMENCLATURE Ry, o» = Probabilistic Float Range of x or y Displacement in
| f Hol Mass Production
A = Size T H i e .. .
iz Size Tolerance of Ho e/ITm ) R prob Probabilistic Float Range of Rotation in Mass Production
Owp,wep = Worst Case Boundary Diameter of Hole/Pin TOP — Tolerance of Position
@up, mmuc = Maximum Material Condition Diameter of Hole/Pin w, —  Width of Slot
@wp, e = Least Material Condition Diameter of Hole/Pin
Vi, ma Maximum Case-specific Float Range of x or y
Displacement
. . . 1. M2
romee = Maximum Case-specific Float Range of Rotation
Ry, max Maximum Float Range of x or y Displacement in ) ) )
A z72] 7]51% 4 (Geometric Quality): 7]%, A12)4, 41|
Mass Production . Frorsh THRol A 205, A|Eo] Aio| TwshE
= o S|, A= o
Ry mee = Maximum Float Range of Rotation in Mass Production ¢ o e =u oAl Al Tee T A

ajAe] a7t AR dAEA 1 Fewst B8 A% gl
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g

WCB of Pin (@p,wcr)

Pin

Fig. 2 Assembly-guaranteed design of each hole-pin pair based on
the worst-case boundary (WCB) concept
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Fig. 3 Part drawings of the base problem, showing size and position
tolerances for holes: (a) Part A and (b) Part B. All numbers
in [mm]
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LMC Holes: @ 5
Pins: @ 4.5

v True Positions

Fig. 5 One situation enabling maximum float in the base problem
with two hole-pin pairs. All numbers in [mm]
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Fig. 6 Two cases of extreme rotational float of Part B, rotated about
the midpoint between the holes, with LMC holes and LMC
pins and no positional errors as in Fig. 5
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Table 1 Analytical and numerical solutions for maximum float ranges of
Ax, Ay, and A@ among the mass-produced assemblies in the

Table 2 Numerical solutions for maximum and probabilistic float
ranges of Ax, Ay, and A@ in the base problem with two hole-

base problem with two hole-pin pairs pin pairs
Analytical Numerical solutions Maximum float range  Probabilistic float range
solutions S/W A S/W B (R, max) (R, prob)
Re max [mm] 0.75 0.75 0.7499 Swa  SWB  SWA  SWB
Rt‘), ma [o] 5.3720 53710 5.3708 Rv [mm] 0.75 0.7494 0.5066 0.4756
Ry[°] 5.3710 5.3708 4.0456 3.6641

Hole-Pin Pair #1 Hole-Pin Pair #2

Tolerance
Zones
} { I l
| I I I
| I 1 I
Il I 1 I
I I 1 I
I | 11 I I
I | | I | Il [ | |
% M A Wk e
L 0.125 0.125 0.375 0.125 0.125 0.375
X
(a)
Hole-Pin Pair #1 Hole-Pin Pair #2
Tolerance

Zones

|
I‘_'I lﬁl lﬂ'ﬂ
0.375 0.125 0.125

Y — i

[ 0375 0.125 0.125
X

(b)

Fig. 8 Two extreme cases among mass-produced assemblies, which

3

allow (a) maximum possible negative Ax float and (b)
maximum positive Ax float. All numbers in [mm]
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Hole-Pin Pair #1 Hole-Pin Pair #2

Tolerance
Zones

| I |
Y — ™ ol o ' —

’ 0.375 0.125 0.125 0.125 0.125 0.375
X

Fig. 9 A case of two holes with positional errors in opposite directions,

illustrating the effects of two hole-pin pairs mutually
inhibiting excessive float of the other. All numbers in [mm]
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Part A

k:y
X
(b)

Fig. 10 Two example designs obtained by adding extra assembly
features: (a) one hole-pin pair added, and (b) two slot-tab
pairs added
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Fig. 11 Drawings of two example designs shown in Fig. 10, with

extra assembly features added. All numbers in [mm]
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Table 3 Comparison of numerical solutions for probabilistic float ranges of Ax, Ay, and A among the base problem and two example problems
with extra assembly features added

Numerical solutions for probabilistic float ranges

Base problem with two Problem with three Problem with two hole-pin pairs
hole-pin pairs hole-pin pairs and two slot-tab pairs
S/IW A S/W B S/W A S/W B S/W A S/W B
R, prop [mm] 0.5233 0.4929 0.4717 0.4629 0.4372 0.4339
Ry, prop [mm] 0.5066 0.4756 0.4507 0.4483 0.4392 0.4345
R prov [°] 4.0456 3.6641 3.8001 3.5937 3.7287 3.3008
Part A Part A

True Posmons

Y

L=

Part B

(a)

@%e

Part B Clrcumcenter of
Triangle DEF

Y

L

(b)

Fig. 12 Consideration of maximum float ranges possible in the two designs in Fig. 11, with extra assembly features added: (a) Translational

float only and (b) Rotational float only
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Fig. 14 Drawings of the exactly constrained assembly design:
(a) Part A, and (b) Part B. All numbers in [mm]
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Fig. 16 Maximum rotational float of Part B in the exactly constrained
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Table 4 Comparison of numerical solutions for probabilistic float ranges of Ax, Ay, and Af among the base problem, two example problems
with extra assembly features added, and the exactly constrained problem

Numerical solutions for probabilistic float ranges

Over-constrained

Exactly constrained

Base problem with two
hole-pin pairs

Problem with three
hole-pin pairs

Problem with two hole-pin
pairs and two slot-tab pairs

Problem with one hole-pin
and one slot-tab pairs

S/W A S/W B S/W A S/W B S/W A S/W B S/W A S/W B

R, prop [mm] 0.5233 0.4929 0.4717 0.4629 0.4372 0.4339 0.4047 0.3998
Ry, prop [mm] 0.5066 0.4756 0.4507 0.4483 0.4392 0.4345 0.2902 0.3072
R prov [°] 4.0456 3.6641 3.8001 3.5937 3.7287 3.3008 2.0210 2.2860
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A Study on Temperature and Stress Distribution in a Lens under Multi-Stage
Cooling Conditions in Progressive Glass Molding Processes

=715 = 1 2 3 4 4.4
X, S¥Y, §3F°, d3=°, 424, HEE

Ji Hyun Hong', Jeong Taek Hong', Dong Yean Jung?, Young Bok Kim®, Keun Park‘, and Chang Yong Park**

1 M2V |athstu sk 7 [AIMAIZEZSa} (Department of Mechanical Design and Robot Engineering, Graduate School, Seoul National University of Science & Technology)
2 FUSHR 7123+ A (R&D Center, Daeho Technology Korea Co., Ltd.)

o2y | XsgLstmEMIE (Inteligent Module Research Center, Korea Photonics Technology Institue)

4 M2atst7|atistn 7| HAARIC|XIQIE Sk} (Department of Mechanical System Design Engineering, Seoul National University of Science &Technology)
# Corresponding Author / E-mail: cypark@seoultech.ac.kr, TEL: +82-2-970-6360

ORCID: 0000-0002-0958-3316

A5HiAd), Glass molding process (R2| A8 27), Process variable (2% Z74), Thermal contact conductance (& ™= ZASEIA),
|

KEYWORDS: Finite element analysis (f-8t24: 3
n (EXE 21L), Stress distribution (224 £3L)

Heat transfer distribution

Glass Molding Process (GMP) is an effective method for producing precise optical elements such as lenses. This
simulation study aimed to predict the distribution of temperature and stress within a lens during a multi-stage cooling
process of GMP. To develop an accurate simulation model including molds and lens, thermal contact conductance and
boundary conditions were determined by analyzing experimental and simulation results. The developed model was used to
investigate changes in temperature and maximum principal stress within the lens, considering variations in cooling time,
speed, and method at each cooling stage. Simulation results indicated that trends of maximum temperature difference and
maximum principal stress within the lens were consistent over time. Results also showed that the maximum principal stress
inside the lens increased significantly with additional cooling after uneven temperature distribution caused by a relatively
short cooling time. Compared to simulation results of the cooling process involving contact only with bottom surface of the
mold, contact cooling with both top and bottom surfaces showed decreased residual stress at the end of cooling and
maximum temperature difference within the lens. However, the maximum principal stress could be higher during the cooling
process involving both surfaces.
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Upper core (C)

Lens

Sleeve (B)

Lower core (A)

(b
Fig. 1 Photograph and sectional view of the molds: (a) Photograph

of molds and (b) Sectional view of molds
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Fig. 2 Photograph and schematic of experiment facility: (a) Photograph
of the inside of experiment facility, (b) Photograph of the
outside of experiment facility, and (c) Schematic of
experiment facility

Table 1 Measurement device accuracy

Device Range [°C] Accuracy [°C]
Thermocouple (K type) -200~1,000 +1.1
Thermocouple (T type) -250~350 +0.2
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Temperature
(400°C, 200°C)

Radiation (€ : 0.45)
(T, : 400°C, 200°C)

Natural convection
(h : 8~10 W/m2-K)

Fig. 3 Boundary conditions for thermal FE analysis

Table 3 Mold internal thermal contact conductance

Thermal contact conductance

Material [W/m>K]
Lower core - Sleeve
Upper core - Sleeve 500
Lens - Sleeve
Lower core - Lens
450
Upper core - Lens
Lower core - Heating block
375

Sleeve - Heating block
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Fig. 4 Experimental and numerical temperature comparison (a)
Lower core temperature comparison, (b) Sleeve temperature
comparison, and (c) Upper core temperature comparison
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Table 4 Process variables and process variable values

Process variables Process variable value

Initial temperature 520°C

400 s

Process time 700 s

1,000 s

2 steps
(520 - 200 - 50°C)

3 steps

Process steps
p (520 - 460 — 20C - 50°C)

4 steps
(520 - 400 — 280 — 150 — 50°C)

Upper heating block No contact

contact condition Contact
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This paper proposed a CNC interpolator based on block overlap, capable of changing acceleration and deceleration time
constants during continuous machining. The time constant can be set individually for each block through G-code
commands. A velocity profile generation algorithm is proposed to set different time constants for both acceleration and
deceleration phases. This algorithm can be applied to short blocks. The block overlap algorithm can be used for corner
smoothing. A simulation model of the CNC interpolator was constructed to evaluate the proposed interpolation algorithm.
Simulation results demonstrated that the proposed algorithm increased precision in areas with significant angular changes
by adjusting time constants while simultaneously reducing machining time.
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1. M2 7520 HAIE E85to] A= Aol 7hssith shANE ik
Fol7h 241, AE AFYS 913 A7t gEEofof slEE mjs
Computer Numerical Control (CNC) E7V7|&= 114, AU EE0 7 AT = 7o A= A8t ofHor
7He el 7R daese Ay ARY 7IHE 285t && CNCoA= 7S AIFGE o8-8l &= Z2adS
TTARE WAL S GBS B B4 AT AN, 25 oM dueEe B89 2 AvYe 7
402 WAtk FA7NA o5 AES oaith IY sk whalo] AwbHom ALgEILh ol BAE A4 WY
254 7IHE GRE E5 Afo]9] HY RoA w7 2 HaEFolE A8 7hesh, dil Bt Wol AR Al
25 At A% 7heo] 7hssHA sk, ol ESl 7k Al dlof| 2-8517] golsitt. o] 7S 1Y 7kl 483t 9
=i = sto] 55 RO T AR At A oA o}
A, 7= SHAIEE aLeste] ThtGo] A8H £k IR = AlRtsl7] Q1 Ag-Eo] AbESATH4,5]. sHATE, Al
e Ak, Y ol mirmee S Adste] s S &l S ARS fAaeAA AbE AldsteR Ty
ARE st A=0] A=) Tulsyan? Iy oA AZro] STtk
o= 22k= Algkstr] 1ske] B-Spline #HEE AF¢lsh= FU 2 =wollMe A4V 7RIS AIRSE WAk 3
27 7S ARESHATH 1] Wange HITHA FUE AT st ARE WY 4 9= ONC B171& ARbskait. #HE z227
FUH 25 Algkelal, 59 olF ZHolof whet @A} Aghgk HollA GREE o83l ZF EFHERE 7 A-E 48T
= A= 7= AT 2]. Shi= Fu AFES 98l 5 = A sl AR TR dare|SolA TS
A} PH 41& ARESIRTH3]. ol&lgt 3773 =2 A ®Rle A=, T ARPE tEA At S Z2akds Ak
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This paper presents a line-of-sight (LOS) stabilization control method for portable optical systems by analyzing fast steering
mirror, image sensor, and gyro sensor system. To compensate for LOS errors caused by hand tremors in portable optical
systems, we present the configuration of an image sensor-based LOS stabilization control system and a control strategy
considering the phase delay effect caused by low sampling frequency of the image sensor. The phase delay effect of the
image sensor caused restricted bandwidth, which limited the stabilization performance. To overcome such limitations, we
present disturbance feedforward control using the gyro sensor and controller design method considering characteristics of
the gyro sensor. Through overall system modeling, we constructed a control simulation model. The LOS stabilization
performance against hand tremor disturbances was analyzed based on the proposed controller design. Simulation results
demonstrated that integrating a gyro sensor-based disturbance feedforward control with the image sensor-based LOS
stabilization control significantly enhanced the stabilization performance.
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Table 1 Parameters of the LOS stabilization simulation model

Max. Tip/Tilt Angle +2.5 mrad
- Resonant frequency 2000 Hz
Fast steering mirror (Unloaded)
(P1S-330.4SL) Resolution 0.25 urad
Moment of inertia N
(Unloaded) 1530 g'mm
Sampling frequency 60 Hz
Image sensor -
Resolution 20 urad
Bandwidth 480 Hz
Gyro sensor Sampling frequency 1000 Hz
Resolution 766 urad
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Fig. 6 Bode plot of plant, loop, and closed-loop of the fast steering
mirror equipped with the mirror of size @25 x 5T

Table 2 Controller parameters of the LOS stabilization simulation

k1 13.98 V/mrad
PI controller
kn 52726 Vs~'/mrad
Wi 10744 rad/s
FSM feedback
controller Notch filter &4 02
O 10
Low-pass
filter Wis 9425 rad/s
ko 0.1487
PI controller
kp 934571
LOS feedback
controller Wn2 5403 rad/s
Notch filter I 0.5
(@) 5
Feedforward High-pass
controller filter Whpf 3.14 rad/s
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Fig. 8 Line-of-sight stabilization performance against the cut-off
frequency of the high-pass filter of the feedforward controller
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Fig. 9 Bode plot of the sensitivity function of line-of-sight to
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Table 3 Comparison of LOS stabilization performance

o LOS performance (RMS)
Vibration .
frequency Feedback Feedback + Reduction

feedforward rate

5Hz 353.3 urad 36.1 urad 89.8%

10 Hz 681.1 urad 38.7 urad 94.3%

Range o
(1-10 Hz) 255.7 urad 51.8 urad 79.7%
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Verification of Real-time Fault Diagnosis Techniques for Weaving Preparation
Process Based on Deep Learning
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In this study, we developed a deep learning-based real-time fault diagnosis system to automate the weaving preparation
process in textile manufacturing. By analyzing typical faults such as shaft eccentricity and rotational imbalance, we
designed a data-driven fault diagnosis algorithm. We utilized tension data from both normal and faulty states to implement
Al-based diagnostic models, including 1D CNN (Convolutional Neural Network), RNN (Recurrent Neural Network), and
LSTM-AE (Long Short-Term Memory Autoencoder). These models enable real-time fault classification, followed by a
comparative performance analysis. The LSTM-AE model achieved the best performance, with a classification accuracy of
99-100% for severe faults, such as 1.5 mm eccentricity and 100 or 150 g rotation imbalance, and 92.2% for minor faults
like 1 mm eccentricity. This accuracy was optimized through threshold adjustments based on ROC curve analysis to select
an optimal threshold. Building on these findings, we developed a GUI (Graphical User Interface) system capable of real-
time fault diagnosis using TCP/IP (Transmission Control Protocol/Internet Protocol) communication between Python and
LabVIEW. The results of this study are expected to accelerate the smartization of the weaving preparation process,
contributing to improved textile quality and reduced defect rates, while also serving as a model for automation in other
sectors.
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Fig. 1 Age distribution of workers in the textile industry [1]
(Adapted from Ref. 1 on the basis of OA)

(a) Weaving preparation process

(b) Monitoring panel

Fig. 2 Automated weaving preparation system of Texmer [2]
(Adapted from Ref. 2 on the basis of OA)
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Fig. 5 Configuration of tension control, measurement system
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Fig. 6 Block diagram of PI control applied in the system
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Fig. 9 LabVIEW structure for data acquisition
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Fig. 10 Normalization applied to tension data
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Fig. 11 Structure of 1D CNN layer [6] (Adapted from Ref. 6 on the
basis of OA)

Table 1 Configuration of 1D CNN model and parameters

Model Value
Convolutional layer 32
ReLU layer -
Maxpooling layer 2
Convolutional layer 32
ReLU layer -
Maxpooling layer 2
Flatten -
Dense 32
Classification layer 5 (Softmax)
Optimizer Adam
MiniBatch 32
Shuffle Every epoch
Epoch 50
Callback EarlyStopping
Train:Test 8:2
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Fig. 12 Structure of RNN layer [7] (Adapted from Ref. 7 on the
basis of OA)

Table 2 Configuration of RNN model and parameters
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Fig. 13 Structure of LSTM-AE layer [8] (Adapted from Ref. 8 on
the basis of OA)

Table 3 Configuration of LSTM-AE model and parameters

Model Value Model Value
RNN layer 32 Encoder
ReLU layer - LSTM 1 layer 32
Dense 32 ReLU layer -
ReLU layer - LSTM 2 layer 16
Classification layer 5(Softmax) ReLU layer -
Repeat Vector 16
Optimizer Adam Decoder
MiniBatch 32 LSTM 3 layer 16
Shuffle Every Epoch ReLU layer -
Epoch 50 LSTM 4 layer 32
Callback EarlyStopping ReLU layer -
Train: Test 8:2 Time Distributed 1
Optimizer Adam
g 1S ek 6] 12)3 Softmax 94 o183 Mini Batch 32
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(a) MSE data points of eccentric/normal shaft
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(b) MSE data points of rotation imbalance/normal shaft

Fig. 14 MSE distribution of normal, abnormal data points
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Fig. 17 ROC curve analysis results of normal, abnormal data

Table 4 Optimal thresholds for each element (ROC FPR = 1)

Element Threshold (FPR = 1)
Eccentric 1 mm 0.114
Eccentric 1.5 mm 0.2016
Rotation imbalance 100 g 0.18
Rotation imbalance 150 g 0.33
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Fig. 18 Results after applying each optimal threshold
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Fig. 19 Classification results using selected threshold (0.18)
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Fig. 20 Configuration of the algorithm for real-time monitoring
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Fig. 21 Real-time monitoring system using LabVIEW
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