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1. Introduction

Environmental sustainability has become a critical global issue

since people have started to notice that the speed of resource

depletion can surpass the regeneration rate of nature. In order not

to compromise the availability of natural resources for future

generations, governments and companies are required to be green

or environmentally-friendly in their decision making. However, the

greenness is difficult to be quantified and evaluated directly.

Generally, the evaluation is done by the environmental performance

of products that we produce, and life cycle assessment (LCA) is

the most widely used technique to provide the potential

environmental impact of a product throughout its life cycle.1-5

The life cycle of a product consists of manufacturing, usage,

maintenance, and end-of-life (EOL) stage,6 and each stage has its

own impact on the environment by utilizing resources directly or

indirectly as shown in Fig. 1. The manufacturing stage encompasses

extraction and processing of raw materials, transportation, part

manufacturing, and assembly. The usage stage operates the

manufactured products, and the maintenance stage requires new

parts, filters, lubricants, etc. depending on the maintenance cycle

and reliability. The EOL stage includes recycling, landfill, and

incineration. LCA considers the product life cycle and provides the

environmental performance of products by analyzing these

activities.

While there are relatively standardized procedures to estimate

the environmental impacts of the manufacturing, maintenance, and

EOL stage in LCA, modeling of the usage stage has not been

actively researched.7,8 There are some reasons why the usage stage

research in LCA has not been conducted actively. First, not only

products but also human behavior and usage environment affect

the stage. It is not only difficult to collect usage data but also large

variations can be observed. Second, the whole usage profile is not

always available and predictions from historical data are frequently
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required. In contrary, the manufacturing stage is less affected by

the human behavior and the life time of a product so that the stage

is more controllable than the usage stage in terms of modeling.

Though it is challenging to collect the usage data and model the

usage stage, the stage is critical in an LCA study since the majority

of the environmental impact can be caused by the stage.7,9-11

However, despite the importance of the usage stage, only a few

studies were conducted and the lack of comprehensive studies on

the usage stage modeling motivates this research. The accurate

estimation of the environmental performance of products is the

basis for sustainable manufacturing.

In this paper, the literature regarding the usage stage modeling

in LCA is reviewed and it attempts to establish a computational

framework for the usage stage modeling by redefining existing

models and proposing new models. The computational framework

can not only provide the overview of the current research on the

usage stage modeling but also lead the researchers and

practitioners to proper modeling techniques. Moreover, future

research directions are suggested along with the proposed

computational framework.

2. Life Cycle Assessment and Usage Model

2.1 Usage Stage in LCA

With the increased awareness of sustainability, LCA gains

popularity as an analytical method to quantify the potential

environmental impact of a product system.8,12 ISO provides

international standards5 for LCA including the four steps in Fig. 1.

The goal and scope definition is the starting point of an LCA

study and guides the other steps. It includes the intended

application, the purpose of the study, the product system, the system

boundary, the functional unit, impact categories, methodologies of

impact assessment, data requirements, assumptions, and limitations.

The double-headed arrows in Fig. 1 indicate that LCA is an

iterative technique. When new data is added or the initial goal and

scope of the study are changed, the first step can be revisited. The

life cycle inventory (LCI) analysis is the next step, which is the

core of an LCA study. It involves collecting data and building an

inventory table which quantifies inputs (e.g., energy, raw material,

and other physical inputs) and outputs (e.g., releases to air, soil, and

water). The life cycle of products can be plugged in this step as

inputs. The life cycle impact assessment (LCIA) evaluates the

significance of the potential environmental impact from the

inventory table with selected impact categories and indicators. As

optional elements, normalization and weighting can help the

understanding of the impact assessment. Finally, the interpretation

step provides recommendations based on the results from the

LCIA step. The recommendations can include various opportunities

to reduce any adverse environmental impact and decision support

for strategic policies.

Various life cycle impact indicators have been developed for the

easier understanding of the environmental impact and the

comparison between products, e.g., Eco-Indicator series, IPCC

(International Panel on Climate Change) Global Warming Potential

(GWP) series, ReCiPe, Ecosystem Damage Potential, etc. Each

impact indicator has unique assumptions and its own objective. For

example, while the Eco-Indicator provides a single score from

three damage categories (resources, ecosystems, health), the global

warming potential is a relative measure of greenhouse gases (e.g.,

carbon dioxide, methane, nitrous oxide, etc.) with a reference gas,

carbon dioxide. In order to help the LCA steps and calculate these

indicators, a set of software programs is available such as SimaPro,

Gabi, openLCA, Team and Greet.

From the perspective of product life cycle, the environmental

impact of a product can be formulated as follows.10,13 First, the

total environmental impact can be expresses as:

(1)

where l is the expected life time starting from time i; It
total, Imfg,

It
usage, It

maint, and It
eol represent the impact of total life cycle, manu-

facturing, usage, maintenance, and EOL. Note that the impact of

the manufacturing stage is a one-time event and is not affected by

the life time.

The impact of the manufacturing stage is defined as:

(2)

where er
raw, ep

process, and es
trans represent the unit environmental

impact of raw materials (r), manufacturing processes (p), and trans-

portation (s); Nr, Np, and Ns denote the number of raw materials,

Fig. 1 Product life cycle and LCA steps
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manufacturing processes, and transportation.

The impact of the usage stage is defined as:

(3)

where eenergy and eq
emission are the unit impact of energy and emis-

sions q; Nt is the amount of used energy; ERq is the emission rate of

emissions q in g/h; OHt is the operating time in hours. It can be seen

that the main emission causes are the expected life time and the

type and amount of energy used and produced.

The impact of the maintenance stage is defined as:

(4)

where em
maint is the unit impact of manufacturing of maintenance

part m; Nm is the number of part m; RCm is the replacement cycle of

part m in hours; the ceiling function gives the number of replace-

ments for part m.

The impact of the EOL stage is defined as:

(5)

where eused
eol and ereplace

eol are the unit impact of EOL processing of

the used product and replaced parts.

Among the life cycle stages of a product, the usage stage is one

of the most uncontrollable stages for manufacturers since user

behavior plays a key role, which makes the stage challenging to be

modeled when conducting an LCA study. Furthermore, the ISO

14040 family does not suggest any guidelines on how to model the

usage stage.7 Therefore, many LCA studies only focus on the

manufacturing stage which has the most standardized procedure

among the life cycle stages.

However, LCA studies report that the usage stage can be the

primary contributor to the environmental impacts of consumer

products in comparison with the other stages.7,9-11 For example, the

reported proportions of the usage stage impact out of the total

environmental impact are as follows: more than 80% for electronic

kettles,14 80% for washing machines,15 70-80% for loaders,16 85%

for tractors,17 90% for surface radar systems,7 90% for diesel

engines.18 The proportions are summarized in Table 1. Though the

percentage can be varied by assumptions (e.g., life time, usage

environment, etc.) and available data, it can be noticed that the

usage stage can dominate the total environmental impacts of

machines.

Also, it is a reasonable assumption that when products run for a

long period of time, the environmental impact of the usage stage

will be increased since the life time directly affects the usage stage.

Therefore, it is expected that large-scale machinery in industry,

agriculture, and military generates the dominant environmental

impact from the usage stage due to the long life time. These types

of machines are the focus of this study though many consumer

products can show a similar pattern. The understanding and proper

modeling of usage patterns are critical for estimating the potential

environmental impacts of machines correctly.

2.2 Usage Model

There are several methods and perspectives for a usage model.

In general, usage modeling aims at understanding users,

identifying requirements, and improving product’s quality in

product design, software engineering and human-computer

interaction. Users and their interactions are typically emphasized in

design philosophies such as human-centered design, user-centered

design process and usability engineering.

Usability body of knowledge provides an overview of various

methods related to usability: ethnography, persona, contextual

inquiry, use case, use scenario, quality function deployment

(QFD), GOMS (Goals, Operators, Methods, and Selection), and so

forth.19 Use cases and use scenarios are known as best practices in

software engineering.20 Use cases are a sequential construct in

object-oriented modeling for providing users’ interactions with a

system. Use scenarios provide key tasks in sequence from the work

context and usage requirements.

QFD is a structured method to convert the customer needs into

engineering parameters or functions for a product. Using the

planning tool called the house of quality, customer attributions and

design parameters are linked and engineering designers can

compare the current product with its competitors. GOMS is a

family of user cognitive models consisting of goals, operators,

methods and selections rules. There are four basic variants of

GOMS: Keystroke-Level Model (KLM), CMN-GOMS, NGOMSL

and CPM-GOMS. For example, KLM defines keystroke-level

Table 1 Usage stage environmental impact of machines

Product
Usage stage impact out of total 

impact (%)

Electronic kettle 80

Washing machines 80

Loader 70-80

Tractor 85

Surface radar system 90

Diesel engine 90
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operators such as pressing keys, buttons, and moving mouse and

helps to predict task execution time in a human-computer system. 

While the aforementioned usage models are useful to

systematically understand the users and their usage patterns in

design and software engineering, it is rarely discussed that how the

usage models can be related to environmental impact. Moreover,

instead of presenting a general framework, separate experiments

have been conducted. For example, Anjos et al.21 show the

usability of software affects sustainability by having the usability

test of 40 participants and calculating energy consumption.

3. Computational Framework of Usage Stage Modeling

for LCA

In this section, the computational framework of the usage stage

modeling for LCA is presented based on the systematic analysis of

related research. Table 2 and Fig. 2 show the proposed

computational framework including the representative usage

scenario method, usage context modeling, and time series usage

modeling. Note that this paper presents new perspectives of each

method and their relations. Eq. (3) is the basic equation for

calculating environmental impact of the usage stage and it is

assumed that the unit impact of energy and emissions in Eq. (3)

can be obtained from environmental database such as the

Ecoinvent and European reference Life Cycle Database (ELCD),

and pollution (emissions) testing.

3.1 Representative Usage Scenario Method

The most widely used method for the usage stage modeling in

LCA is the representative usage scenario method though there is

no consensus for the name among researchers. The representative

usage scenario in this paper indicates a representative usage profile

or an average value of different usage modes. As shown in Eq. (3),

the energy (fuel, electricity, etc.) consumption, Nt and the life time

(or total driving distance), , are the two key usage

parameters affecting the environmental impact of the usage stage.

For example, Li et al.18 assume the average fuel consumption

(25 l/100 km) and the total driving distance (300,000 km) for the

LCA study of a truck. Then, the potential environmental impact of

the usage stage can be calculated from the required fuel production

and the emissions from the engine operation. Choi et al.22 assume

the average electricity consumption (94 Wh/week) and the life

time (4 years) for the LCA study of a personal computer. Then,

similarly the environmental impact can be quantified from the

electricity production and consumption.

The representative usage scenario method mainly resorts to the

correctness of assumed usage profiles, and most of the studies that

use the method do not show how to get the representative scenario.

The work of Gustafsson and Rönnblom7 is the one of the few

studies which shows the clear definition of the representative usage

scenario. In their LCA study of the surface radar system, eight

possible operational profiles are defined first and the representative

usage is derived as the average value of energy consumption of the

eight different operational profiles. Since the potential

environmental impacts of the eight operational profiles differ

widely, if one of them is chosen as a representative usage scenario,

the total environmental impact of the product can be largely

misestimated.

It has not been discussed but once the representative usage

scenario is selected, a hierarchical breakdown structure can be

constructed for related activities similar to the concept of

keystroke-level model in the GOMS family. The amount of energy

consumption can be summed up with a bottom-up approach using

the hierarchical breakdown structure.

OH
t

l

t=i∑

Table 2 Usage modeling techniques in the framework

Modeling techniques Advantage Disadvantage

Representative usage scenario method Simple and easy to use Can’t explain variation of usage factors and time

Usage context modeling Can capture variation of usage factors Difficult to build causal maps

Time series usage modeling Can capture usage patterns over time Difficult to reflect various usage patterns

Fig. 2 Computational framework for usage stage modeling
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The representative usage scenario method is simple and easy to

use so that many LCA studies use this method. However, the

method cannot show the variability of the usage stage, and various

usage profiles cannot be generated and tested. To overcome this,

the usage context modeling in Fig. 2 can be used. Another

limitation of the representative usage scenario method is that the

method assumes either the whole usage profile is known or the

usage stage is the steady-state process over time. For example, it is

not clear how to determine the required period for averaging (e.g.,

last 10 years or last 5 years) in the representative usage scenario

method. Also, it is possible that there is an increasing or decreasing

trend in the usage stage, which is the obvious violation of the

assumption in the representative usage scenario method. For this

issue, the time series usage modeling in Fig. 2 can be used.

3.2 Usage Context Modeling

The usage context modeling is proposed by Telenko and

Seepersad14 in order to deal with operational variability in LCA23

using probabilistic graphical models (PGMs). The core of this

method is to build a probabilistic network of usage context factors

instead of utilizing separate scenarios, e.g., A, B, and C in Fig. 3.

The usage context factors can be classified as human factors

(user’s behaviors, skills, habits), situational factors (location, time,

weather, goal), and product factors (features and specifications).

With this perspective, a scenario can be considered as a set of

usage conditions that describes how a product can be used.

The PGM is used to express the conditional dependence

structure between the usage context factors as a graph. Each usage

context factor is a node in the graph, and an arrow represents a

directional dependency. Based on the network structure with sets

of conditional and joint probability distributions, operational

variability in LCA can be studied. For example, let’s assume that

the energy consumption of electronic kettles is caused by weather

and the types of drinks. Once building a PGM and collecting data

for Bayesian inference, a simulation study can be conducted and

the final result has a form of distribution. Furthermore, various

scenarios can be tested utilizing the built PGM. The mathematical

model can be expressed simply as follows:

(6)

which indicates that the life time energy use can be related to the

usage context factors, A, B, and C.

The understanding of the relationship between the representative

usage scenario method and the usage context modeling is

important in the proposed framework. The representative usage

scenario method can be viewed as the mean of the distribution of

the usage parameter (energy consumption) in the usage context

modeling as depicted in Fig. 3. That is, the representative usage

scenario method assumes the representative usage condition,

which is the specific realization of usage context factors.

The limitations of the usage context modeling include building a

conditional dependence structure and requiring more data than the

representative usage scenario method. Identifying causal relations

among different usage context factors is challenging or sometimes

impossible. Moreover, it can be time-consuming to collect all the

necessary data to estimate the sets of conditional and joint

probability distributions.

3.3 Time Series Usage Modeling

The time series usage modeling is proposed by Ma and Kim10 to

deal with the issue of time in LCA.24-26 The method decomposes

patterns of usage parameters (e.g., energy consumption and

operating hours) as trend, seasonality, and level factors. A trend is a

long-term increase or decrease pattern; a seasonality is a repeated

pattern with a fixed and known period; a level is remaining values

after removing trend and seasonality factors. 

The time series usage modeling can capture these usage patterns

and model them using time series analysis techniques (e.g.,

exponential smoothing27 and ARIMA.28,29 The mathematical

model can be expressed simply as follows:

(7)

where s is the number of time segments, TSNt and TSOH are time

series models for the amount of used energy and the operation time.

With the advent of sensors and storage technology, operational

data can be gathered in real time for a specific usage condition.

Fig. 3 Relation between usage context modeling (a) and

representative usage scenario method (b)
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This data can be an input of the time series usage modeling. Time

series analysis is useful when the causal relationships among usage

context factors are not easily identified. Therefore, the usage

context modeling and the time series usage modeling can be

distinguished depending on the availability of the causal map. The

time series usage modeling utilizes the autocorrelation of the usage

parameters.

It is important to understand the relationship between the

representative usage scenario method and the time series usage

modeling. The representative usage scenario method can be

considered as an equally weighted smoothing (or averaging),

which is the simple average of all past data as shown in Fig. 4.

Since the weights (e.g., range from 0 to 1) for past data can have

various forms (e.g., 1 for only the latest data and 0 for others, or

exponentially decreasing weights for older data), the representative

usage scenario method is only a special case of the time series

usage modeling. The representative usage scenario method

smooths a time series using a simple averaging so that it cannot

reflect the various usage patterns. The time series usage modeling

provides not only the future usage patterns based on trend,

seasonality, and level factors but also their variability (i.e.,

prediction intervals) systematically.

The limitation of the time series usage modeling is requiring

more complex modeling procedures than the representative usage

scenario method. It should be addressed when the time series usage

modeling can be used with the high cost. Finally, a predictability

issue should be addressed. It is beneficial to understand the

predictability issue and address how to improve the prediction

accuracy.

4. Future Research Directions

This section provides some future research directions of the

proposed computational framework for the usage stage modeling.

Since the representative usage scenario method can be viewed as

the special case of the other methods, the research directions

mainly focus on the limitations of the usage context modeling and

time series usage modeling.

4.1 Data Collection and Analysis for Causal Map

The usage context modeling requires more data than the

representative usage scenario method in order to figure out the

usage context factors and interactions among them (i.e., causal

map). One possible solution is to utilize telematics systems.

PRODUCT Link and JDLink are the examples of the telematics

systems provided by Caterpillar and John Deere. Information such

as locations, work modes, operating hours, energy consumption,

and conditions of machines can be stored remotely. 

Once the usage data is collected, data mining or machine

learning techniques can be applied to relate the usage context

factors and usage parameters. Recently, there have been some

attempts to identify usage contexts for product design using

embedded sensor data.30,31

4.2 Trend Detection

The representative usage scenario method is useful when there

is no trend. Ma and Kim10 show that when there is a trend, the

simple average method can generate huge errors in LCA. This

gives one critical condition when the time series usage modeling

can be used. Instead of applying various time series techniques in

the beginning, it is important to test whether a trend is detected or

not first.

A trend can be observed with the changes of usage context

factors. For example, users’ behaviors and skills as human factors

or fuel price as situational factors can continuously affect the fuel

consumption. Therefore, trend detection techniques should be the

first step to determine the necessity of the time series usage

modeling. Note that seasonality can also be important when an

LCA result of a specific time period is required, e.g., the

environmental impact of the first quarter in 2018.

Regression analysis and the Mann-Kendall test32,33 are the

popular trend testing techniques as parametric and non-parametric

methods. Regression provides the regression slope as an estimator

of trend magnitude. Regression analysis assumes that the residuals

are independent and normally distributed with a constant variance.

The Mann-Kendall test is based on the calculation of Kendall’s tau

in Eq. (6) with the null hypothesis of no monotonic trend.

(8)

where n is the total number of time series data points and the statis-

tic S is given in Eq. (7).

Fig. 4 Relation between time series usage modeling and representative

usage scenario method
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(9)

where xj is the data point one time step ahead, xi is the current data

point, and the sign of (xj - xi) is given in Eq. (8).

(10)

If there is a seasonality in the time series, the seasonal Mann-

Kendall test can be used.34

4.3 Predictability

As discussed in Sec. 3.3, the conventional usage modeling

technique, representative usage scenario method, can be

considered as an equally weighted smoothing over all available

past data. When an LCA study is conducted, if only past

environmental impact is required and the whole picture of a usage

profile during the period is available, the representative usage

scenario method can provide fairly accurate modeling for the usage

stage. However, in general, future usage patterns should be

predicted for LCA within the expected life time of a machine

based on the limited past data10 Therefore, it is also important to

understand the predictability of a given time series. The goodness

of predictability of a time series depends on how much information

the past conveys for the future values of the time series.35

The standard approach for predictability is the use of a hold-out

strategy.36 In this strategy, the most recent data points withheld

from time series modeling (hold-out data) and a time series model

is built only using the remaining data points (training data). The

prediction accuracy of the built model is then tested with the hold-

out data.

There have been other studies to estimate the predictability of

time series. Diebold and Kilian35 propose a measure of relative

predictability which is based on the ratio of short-run accuracy

relative to long-run accuracy. For example, if a time series is white

noise, relative predictability is zero since short-run forecasts are as

accurate as long-run forecasts. If a time series is generated from a

random walk, relative predictability will decline as the forecast

horizon increases. Garland et al.37 focus on the inherent complexity

of real-world time series such as the dimension, nonlinearity, noise,

etc. Based on the concept of entropy (e.g., white noise have

maximal entropy rates while well structured time series have low

entropy rates), predictability can be quantified. These methods are

useful in that a single value related to the complexity of given time

series can be suggested.

Instead of quantifying predictability using a single value, a

visualization method is proposed to help the understanding of

factors which can affect predictability.38 The visualization method

basically uses the hold-out sampling strategy but extends the basic

strategy more systematically as shown in Fig. 5.

The first way (in Fig. 5(a)) aims to get a historic insight by

extending the length of training data. The second way (in Fig. 5(b))

tries to detect where predictions work well or not in time series,

and analyze systematic patterns that cause the result. The length of

training data keeps constant and moves towards the hold-out data.

The third way (in Fig. 5(c)) provides the extent the recent data

affects prediction results by varying the starting point of training

data while the length of hold-out data keeps constant.

4.4 Additional Prediction Techniques

The previous study on the time series usage modeling proposes

that the two most popular time series analysis techniques,

exponential smoothing and ARIMA, can be used to model a time

series in an LCA study.10 Two additional prediction techniques are

possible to improve the prediction accuracy for LCA.

The first candidate is the dynamic regression model.28,29,39 Time

series analysis techniques can utilize time series dynamics and

provide predictions systematically. However, even though some

causal factors can be identified, the time series analysis techniques

in the previous study10 cannot include the information. The

dynamic regression model allows external variables with time

series modeling, and this can be viewed as the combination of the

time series modeling and the usage context modeling in Fig. 2.

The regression model with ARIMA errors is the example of the

dynamic regression model29

Fig. 5 Three different ways in the visualization method38
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(11)

where Yt is a time series (e.g., energy consumption); there are the k

predictor variables at time t (Xk,t); the error series nt is assumed to

follow the ARIMA (p,d,q) model; B represents a backward shift

operator, e.g., BYt=Yt-1; the first parenthesis is an autoregressive

(AR) model of order p with coefficients φ; the second parenthesis is

an integration (or differencing operation); the third parenthesis on

the right-hand side is a moving average (MA) model of order q with

coefficients θ; et is white noise. The dynamic regression model also

can have lagged external variables. The lagged predictors can pro-

vide more dynamic nature of predictive structure, e.g., X1,t , X1, t-1,

X1,t-2 , and so on. 

The second candidate is the artificial neural network model. The

neural network model can be very useful when prediction accuracy

is mainly focused. Though the model cannot explain how the

prediction is made, complex nonlinear relationships between input

and output variables can be modeled.

A neural network is a network of neurons connected in layers.

When it has the simplest form, the neural network is equivalent to

linear regression. When there are multiple layers, inputs can be

modified nonlinearly based on observed data to predict outputs.

With time series data, lagged values of outputs can be directly used

in a neural network autoregression.29 A hybrid approach is also

proposed to combine the neural network and ARIMA model40. The

hybrid approach considers a time series composed of autocorrelated

linear and nonlinear components. Once the ARIMA model is fitted

for the autocorrelated linear portion, the residuals can be modeled

nonlinearly using the neural network model.

5. Conclusion

In this paper, the studies about the usage stage modeling in LCA

are reviewed. Despite the importance of the usage stage in LCA,

there is a lack of comprehensive studies on the usage stage

modeling. The proposed computational framework can not only

provide the overview of the current research but also lead the

researchers and practitioners to proper modeling techniques. The

framework of the usage modeling includes the representative usage

scenario method, the usage context modeling, and the time series

usage modeling based on the analysis of the reviewed literature.

The representative usage scenario method is the most widely used

method but it has some critical limitations. The usage context

modeling and the time series usage modeling can overcome some

aspects of the limitations in the representative usage scenario

method. The relationships among these usage modeling

approaches show that the representative usage scenario method can

be considered as a special case of the other methods.

Furthermore, the future research directions are suggested along

with the proposed computational framework. First, automatic data

collection and analysis methods can enhance the applicability of

the usage context modeling. Second, trend detection is suggested to

be the first condition to use the time series usage modeling over the

representative usage scenario method. Third, predictability of a

time series is important since the modeling of the usage stage

requires prediction unless only past environmental performance is

needed. Fourth, the dynamic regression model and the artificial

neural network model are suggested to improve the prediction

accuracy. In the future, the future research directions should be

validated with real data sets.
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