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Quantitative metallographic analysis is significant in predicting the mechanical and physical properties of materials. This

paper presents an alternate method to the approach used by Zhao, et al. (2016) in the paper “Metallographic Quantitative

Analysis for GCr15 by Digital Image Process” in identifying carbide particles present within GCr15 bearing steel. GCr15

bearing steel is classified as a quality alloy; high carbon, chromium and manganese. This study quantitated the proportion

of carbide particles in GCr15 bearing steel microstructure using the Mask Region-Based Convolution Neural Networks

(Mask R-CNN) approach. The approach precisely located carbide particles, using bounding box indicators based on the

concept Region of Interest (ROI) as used in the Mask R-CNN approach and masked the carbide particles within the ROIs.

With this approach, we accurately located and masked more than 90% of the target particles, labeled and calculated the

area and perimeter of each corresponding blob within the microstructure of GCr15.
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1. Introduction 

Quantitative metallography is a very important method in

materials analysis. It highlights the relationship between processes

and microstructures as well as their associated mechanical and

physical properties. One other importance of quantitative

metallography is its ability to supply first-hand data which is useful

in establishing a logical-mathematical representation and the

understanding of the mechanical properties of the metals. These

processes are very instrumental in improving existing materials

and also in the development of new ones.1 Research and

development departments consider quantitative microstructure

characterization as an important procedure in the quality control of

materials and products.14 An analysis of the composition of the

internal and metallographic structures makes it easier to

understand. This is done through using an optical metallographic

microscope or using an electron microscope and other analytical

instruments to analyze the characteristics of the material. This

shows the important role metallographic analysis plays in

establishing the quantitative relationship between the structure and

its performance.3,4 GCr15 bearing steel is used in the

manufacturing of rolling bearings as well as rolling rings. Due to

its functionality, the microstructure and performance of bearing

steel are often researched and studied.15-18 

Rolling bearings like GCr15 bearing steel are used in different

fields of life and most importantly in the advancement of science

and technology. The use of this metal has inspired researches and

contributed significantly to the progress made in advanced

vehicles, high-speed railways and other technologies in the

aviation industry. However, meeting the demands of this rapidly

developing industry requires improvement in its mechanical

properties to meet the demands. In our research, our task was to

locate and segment the carbide particles present within the GCr15

microstructure, to use a less tedious approach as compared to the

Copyright © The Korean Society for Precision Engineering

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/

3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://crossmark.crossref.org/dialog/?doi=10.7736/JKSPE.019.144&domain=http://jkspe.kspe.or.kr/&uri_scheme=http:&cm_version=v1.5


362 / May  2020 한국정밀공학회지  제 37권 제 5호

methods used by Zhao et al. (2016).1,4,6

The image of GCr15 microstructure is quite delicate because its

foreground and background are basically of the same color and

proved to be challenging during processing. The edges of the holes

in the image have similar pixel values as the boundaries of the

carbide particles.6 In the experiment by Zhao et al. (2016), the

image analysis was done by cropping the image into segments

before processing the image using the traditional method of image

segmentation which proved to be very slow and challenging.6 In

our case, we experimented using the Mask R-CNN approach, a

branch of CNN. It was a very effective and an efficient method in

detecting the carbide particles without cropping the image into

sections.

Convolutional neural networks (CNN) are a class of deep

learning neural networks and represent a tremendous breakthrough

in image recognition and serves as an efficient learning method for

hierarchical features from large datasets. Deep learning has

emanated as a new field in machine learning and is applied in

many image applications. There are key areas where the

application of the theory of machine learning and pattern

recognition are utilized. Image classification for instance has been

one of the most significant topics in the area of computer vision

and computer learning. Examples of image applications include

facial recognition, car identification, signature authentication and

many others.2,5,25-27

The Mask R-CNN method involves the addition of segmentation

masks on the individual region of interest (ROI) to the image under

study. The masked section is a pixel-to-pixel segmentation of each

ROI by using Fully Convolutional Network. The algorithms of

Mask R-CNN are designed to achieve object detection, localization

and instance segmentation of the images. It combines Faster RCNN

and FCN, introduces ROI-Align to preserve the spatial orientation of

features to prevent data loss. Our image; SEM image of the GCr15

microstructure has very little difference between the background

and the foreground, which makes it quite challenging to process

using the traditional method of segmentation, however, the process

of using Mask R-CNN rather proved very effective and easy.5

2. Image Acquisition

The images of the GCr15 microstructure were acquired after

heat tempering and quenching of the GCr15 bearing steel. The

metallographic images were obtained by using a JSM-6700 JSM

6700F NT scanning electron microscope (SEM). The Fig. 1 is an

example of the SEM image of the GCr15 microstructure of size

1280 × 1024 pixels.6

3. Method

The Mask R-CNN method is built on Faster R-CNN and was

tested on the coco dataset. It also proved efficient on the ResNet-50

and ResNet-101 but better on ResNet-101.5 However, some of the

analysis we performed required that we import modules like

NumPy to help with the blob count, perimeter and area of the

blobs. Some components of Mask R-CNN and modules we used to

execute our task include:

NumPy, it is a python extension module. We imported this

module into our Mask R-CNN algorithm, which was available on

GitHub by Matterport. We then stored our numerical results as data

in a CSV format. NumPy can be described as a basic package for

scientific computing with Python. It encompasses things such as an

N-dimensional array object, sophisticated (Broadcasting)

functions, tools for integrating C/C++ and Fortran code and a

useful linear algebra, Fourier transform as well as random number

capabilities. The colors expressed in the image are pixels values

which are expressed in the form of arrays. Concerning the Mask R-

CNN, NumPy was imported to carefully locate the coordinates for

the bounding boxes in terms of x and y and around the targeted

images as well as in the area of the blob masking within the

bounding boxes.20

Faster R-CNN is an object detection architecture which

comprises convolution layers, regional proposal network (RPN)

and class boundary box prediction by using a fully connected

neural network that uses RPN to take inputs and predict object

classes and bounding boxes.21

ResNet-50 and ResNet-101 are very efficient and substantially

deeper residual learning frameworks. These residual networks

Fig. 1 SEM image of the GCr15 Microstructure, JSM-6700 SEM

(1280 × 1024 pixels)6 (Adapted from Ref. 6 on the basis of

OA)
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proved easier to optimize and with a high level of accuracy. This

was done by training it on ImageNet classification dataset with a

depth of up to 152 layers.22 The Mask R-CNN was able to perform

well on ResNet-101 C4 and FPN, however, the results on FPN

outperformed C4.5

COCO dataset is defined as Common Objects in Context

(COCO) dataset. “COCO is large-scale object detection,

segmentation, and captioning dataset. COCO has several features:

Object segmentation, Recognition in context, Superpixel stuff

segmentation, 330 K images (> 200 K labelled), 1.5 million object

instances, 80 object categories, 91 stuff categories, 5 captions per

image, 250,000 people with keypoints.” This dataset was used in

the open-source project for Matterport’s Mask R-CNN.24

2016 COCO challenge was one of the annual COCO

competitions organized in 2016. The winners excelled for their

brilliant work on instance segmentation.24

Matterport is an open-source developer account for Mask R-

CNN on GitHub. It provided the algorithm for Mask R-CNN for

object detection as well as instance segmentation on Keras and

TensorFlow.10

The dataset provided by Zhao et al. (2016) on the GCr15

microstructure as used in their research was very small; 8 in total

with size 1280 × 1024 pixels. Due to this, we augmented the

dataset by generating new images from the existing data. Data

augmentation is an important process in image analysis. It helps us

to add more data to the existing one most often due to small

dataset. Small datasets do generate the problem of overfitting on

test images due to generalization problem on the training model

but since data augmentation has proven to be very effective in

image classification using deep learning it was the right approach.

We used the method of the traditional data augmentation processes

such as rotation, cropping to 224 × 224 pixel size, zooming, color

distortion, flipping input images and introducing other images that

look like our primary image and for each image of size N, a new

dataset of size 2 N was produced and subsequently increased our

dataset to 50 images.7

Our new dataset was N = 50; training data = 30, Validation data

= 10, Testing data = 10. This was quite limited but we generated

very promising results on our test data. In extracting the features of

our blobs, we used the VGG Image Annotator software to annotate

the blobs in each image, this was done for N = 40, and saved them

as JSON files. The VGG Image Annotator saved each image in the

form of x and y coordinates in each region during the annotation.

As a result, we loaded these files as a “.json” file and thus made it

easier for us to train considering that each coordinate of the shape

of the blob is an object instance.8

3.1 Using Mask R-CNN Model

Mask R-CNN works towards the problem of instance

segmentation, the process of detecting each distinct object present

in the image. Instance segmentation is a combination of sub-

problems in an image. These are: 

(a) Object detection

(b) Semantic Segmentation 

“a” and “b” together form instance segmentation. The bounding

boxes generated in Fig. 3 and the masked blobs in Fig. 4 are

outputs of semantic segmentation.5 Mask-RCNN is simple and

flexible. It works by adding a branch for predicting an object mask

which is in parallel with the existing branch for bounding box

recognition to Faster R-CNN. The Mask-RCNN uses region

proposals which are generated via a region proposal network

Fig. 2 Scanning electronic microscopic images of the GCr15

microstructure by the JSM 6700F NT instrument
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(RPN) present within the Faster R-CNN architecture.5,21 This

approach replaces the ROI-Pooling operation in Faster-RCNN

with ROI-Align and generates very accurate instance segmentation

masks on the blobs. This was achieved by preserving the spatial

orientation of the features followed by adding a network head to

produce the desired instance segmentations.5,9 It was proven that

ResNet-101 was effective as a backbone for Mask-RCNN by using

a feature pyramid network (FPN). This network proved effective

and efficient in terms of accuracy and speed which makes it

superior to other methods. Mask R-CNN is designed to train on

COCO dataset, a large dataset and proved very successful.5,23 In

this experiment the implementations were done using the

algorithms available in GitHub by Matterport which was built

using Keras and TensorFlow open-source libraries.10-12 In our

experiment, we used ResNet-101 model as a backbone due to its

higher efficiency.5,9,19 Instead of training the model from scratch,

we used transfer learning. We did this by initializing the model

weights which was obtained through pretraining on the MS COCO

dataset. We subsequently trained only the network heads and fine-

tuned some parameters to suit our task. The training was done

using AWS P2 instance and generated an accuracy of 99.03%.9,13

3.2 Using Area and Perimeter of the Blob (Carbide Particles)

Area and perimeter of the microstructure are relevant

quantitative data that helps to understand the mechanical

characteristics of GCr15. In this research work we were able to

achieve the following:

1. Label the blobs in each bounding area

2. Calculate the area and perimeter of the blobs (Carbide

Particles) in pixels

Fig. 3 Locating the blobs using bounding boxes
Fig. 4 Segmentation masks on each blob within the bounding boxes 
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Labelling the blobs required that we modify the Mask R-CNN

algorithm. We introduced a blob counter parameter to count the

masked blobs from i = 1 for a range of masked N values. We

imported the NumPy module in Python to calculate the area and

perimeter of the masked blobs from i = 1 to the Nth blob.

4. Results and Discussion

We modified the algorithm to first detect the region of interest

(ROI); blob areas, by generating only the bounding boxes the

blobs. This was achieved by setting the “show mask line” in the

Mask R-CNN line of code to “False”. In this case, the results we

obtained were without masks, just bounding boxes around the

blobs in the image to confirm that our blobs were accurately

located. 

Fig. 5 Using the blob counter to label each blob from i = 1 to the Nth

term

Table 1 Blob number, area and perimeter of blobs in SEM image A

(Pixel value)

Blob

number

Blob area

(Pixel)

Blob perimeter 

(Pixel)

1 8661.0 2887.0

2 7830.0 2610.0

3 8334.0 2778.0

4 6727.0 2242.3

5 1113.0 371.0

6 1908.0 636.0

7 10886.0 3628.7

8 1335.0 445.0

9 1221.0 407.0

10 1145.0 381.7

11 1258.0 419.3

12 932.0 310.7

13 1330.0 443.3

14 2181.0 727.0

15 1441.0 480.3

16 2494.0 831.3

17 1396.0 465.3

18 779.0 259.7

19 867.0 289.0

20 1690.0 563.3

21 623.0 207.7

22 10421.0 3473.7

23 881.0 293.7

24 627.0 209.0

25 534.0 178.0

26 1308.0 436.0

27 840.0 280.0

28 850.0 283.3

29 712.0 237.3

30 580.0 193.3

31 1200.0 400.0

32 423.0 141.0

33 476.0 158.7

34 1024.0 341.3

35 494.0 164.7

36 1440.0 480.0

37 785.0 261.7

38 750.0 250.0

39 451.0 150.3

40 2146.0 715.3

41 371.0 123.7

42 1920.0 640.0
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We then proceeded to mask the blobs by changing the False to

True. The results obtained in this process was an improvement on

the earlier experiments conducted by Zhao et al. (2016), which

includes: image read, gray and image filtering, corrosion and

reconstruction of the gray image, image binarization and

morphological operations, and finally, area fill and computation. In

using the Mask R-CNN method, all we needed to do was run the

codes on our SEM images and series of results will be generated;

blob number, masked blobs, area and perimeter. We located the

carbide particles and achieved over 90% accuracy on a very small

dataset. 

The approach employed by Zhao et al. (2016) is time-consuming

and has to be done manually per image. However, with the Mask

R-CNN approach, once training is complete and tested successfully,

analysis on similar images takes few seconds to complete which is

a great advantage that CNNs have over traditional methods of

image analysis. The data generated from the images in Fig. 5 are

displayed in Tables 1 and 2. 

Tables 1 and 2 contain the number of blobs for each SEM

image and the area and perimeter of the blobs measured in pixels

within that image. It can be observed from our images in Figs. 4

and 5 that a vast majority of the carbide particles (Blobs) were

captured automatically within the bounding boxes and masked

accordingly. For each labelled bounding box, there is a

corresponding perimeter and area of the masked blob in that

bounding box.

Table 1 Continued

Blob

number

Blob area

(Pixel)

Blob perimeter 

(Pixel)

43 642.0 214.0

44 573.0 191.0

45 332.0 110.7

46 627.0 209.0

47 289.0 96.3

48 752.0 250.7

49 304.0 101.3

50 1818.0 606.0

51 414.0 138.0

52 375.0 125.0

53 384.0 128.0

54 289.0 96.3

55 497.0 165.7

56 517.0 172.3

57 345.0 115.0

58 268.0 89.3

Table 2 Blob number, area and perimeter of Blobs in SEM image A

(Pixel value)

Blob

number

Blob area

(Pixel)

Blob perimeter

(Pixel)

1 2010.0 670.0

2 4942.0 1647.3

3 4318.0 1439.3

4 4090.0 1363.3

5 541.0 180.3

6 1077.0 359.0

7 1005.0 335.0

8 1001.0 333.7

9 932.0 310.7

10 1316.0 438.7

11 1153.0 384.3

12 1263.0 421.0

13 954.0 318.0

14 2189.0 729.7

15 1641.0 547.0

16 637.0 212.3

17 1188.0 396.0

18 1631.0 543.7

19 1174.0 391.3

20 2781.0 927.0

21 593.0 197.7

22 1276.0 425.3

23 1260.0 420.0

24 1382.0 460.7

25 703.0 234.3 

26 1178.0 392.7

27 453.0 151.0

28 452.0 150.7

29 776.0 258.7

30 1660.0 553.3

31 691.0 230.3

32 2612.0 870.7

33 383.0 127.7

34 393.0 131.0

35 243.0 81.0

36 731.0 243.7

37 521.0 173.7

38 782.0 260.7

39 552.0 184.0

40 415.0 138.3

41 529.0 176.3

42 403.0 134.3

43 2398.0 799.3

44 502.0 167.3

45 307.0 102.3

46 201.0 67.0

47 227.0 75.7

48 248.0 82.7

49 1837.0 612.3

50 225.0 75.0
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5. Conclusion

These experimental results provided useful and comprehensive

data on the quantitative analysis of a complex microstructure of the

GCr15 bearing steel using the Mask R-CNN model. This research

merges metallographic quantitative analysis and convolutional

neural networks (CNNs) to generate data on GCr15 bearing steel

microstructure. The results from the Mask R-CNN gave us a

comprehensive morphological analysis and with the help of

NumPy, we were able to compute the perimeter and the area of the

carbide particles masked within the bounding boxes. It has been

able to produce high-quality results which contribute to

quantitative research. It located most of the carbide particles in the

microstructure, masked them and did an efficient numerical

operation on each blob by generating quantitative data. With this

method, the network was given a vision to identify the target image

particles that it was trained to identify. The performance of this

model, the Mask R-CNN model proved efficient, effective and

serves as great network architecture for semantic segmentation. By

knowing and comprehending the microstructural quality of the

metal, we can control the properties of the metal, predict its

behavior or failure under varying conditions. 
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APPENDIX

Training Configurations

BACKBONE resnet101

BACKBONE_STRIDES [4, 8, 16, 32, 64]

BATCH_SIZE 1

BBOX_STD_DEV [0.1 0.1 0.2 0.2]

COMPUTE_BACKBONE_SHAPE None

DETECTION_MAX_INSTANCES 100

DETECTION_MIN_CONFIDENCE 0.6

DETECTION_NMS_THRESHOLD 0.3

FPN_CLASSIF_FC_LAYERS_SIZE 1024

GPU_COUNT 1

GRADIENT_CLIP_NORM 5.0

IMAGES_PER_GPU 1

IMAGE_MAX_DIM 1024

IMAGE_META_SIZE 14

IMAGE_MIN_DIM 800

IMAGE_MIN_SCALE 0

IMAGE_RESIZE_MODE square

IMAGE_SHAPE [1024 1024 3]

LEARNING_MOMENTUM 0.9

LEARNING_RATE 0.001

LOSS_WEIGHTS {'rpn_class_loss': 1.0,

'rpn_bbox_loss':1.0, 

'mrcnn_class_loss':1.0,

'mrcnn_bbox_loss':1.0, 

'mrcnn_mask_loss':1.0}

MASK_POOL_SIZE 14

MASK_SHAPE [28, 28]

MAX_GT_INSTANCES 100

MEAN_PIXEL [123.7 116.8 103.9]

MINI_MASK_SHAPE (56, 56)

NAME blob

NUM_CLASSES 2

POOL_SIZE 7

POST_NMS_ROIS_INFERENCE 1000

POST_NMS_ROIS_TRAINING 2000

ROI_POSITIVE_RATIO 0.33

RPN_ANCHOR_RATIOS [0.5, 1, 2]

RPN_ANCHOR_SCALES (32, 64, 128, 256, 512)

RPN_ANCHOR_STRIDE 1

RPN_BBOX_STD_DEV [0.1 0.1 0.2 0.2]

RPN_NMS_THRESHOLD 0.7

RPN_TRAIN_ANCHORS_PER_IMAGE 256

STEPS_PER_EPOCH 100

TOP_DOWN_PYRAMID_SIZE 256

TRAIN_BN False

TRAIN_ROIS_PER_IMAGE 200

USE_MINI_MASK True

USE_RPN_ROIS True

VALIDATION_STEPS 50

WEIGHT_DECAY 0.0001
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