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A clean room is used for adjusting the concentration of suspended particles using an air-conditioner. It has a fan-filter unit

combining a centrifugal fan and a high-efficiency particulate air filter that purifies the outside air and directly affects its

cleanliness. Defects in these systems are typically detected using special sensors for each fault, which can be costly.

Therefore, this paper proposes a system for diagnosing defects in the fan-filter unit using a single differential sensor and

deep learning. The fan-filter unit is part of the air-conditioning system, and it is usually defective in bearings, filters, and

motors. These faults include ball wear, internal bearing contamination, filter contamination, and motor speed changes. Each

defect was artificially induced in experiments, and the differential pressure data of each defect was learned using a long

short-term memory (LSTM) deep learning algorithm. The results of deep learning experiments generated by randomly

mixing data five times were presented using a confusion matrix, and the results showed an accuracy of 87.2±2.60%.

Therefore, the possibility of diagnosing defects in the fan-filter unit using a single sensor was confirmed.
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1. Introduction

An abundance of vapor pollutants emitted during semiconductor

manufacturing or chemical processes, such as sulfur oxide, nitrogen

oxide, ozone, and ammonia, can negatively influence the semiconductor

manufacturing environment [1]. Therefore, semiconductor

manufacturing and chemical processes are performed in clean

rooms, wherein the concentration of suspended particles is

controlled. Furthermore, the inflow, generation, and congestion of

internal particles are minimized and the temperature, humidity,

pressure are controlled [2].

Any variation from the precise environment maintained by the

clean room can adversely affect the production and yield of displays

and semiconductors produced therein [3]. Problems in clean rooms

can be detected by monitoring the vibrations of the air-conditioner as

well as variations in the temperature, humidity, and pressure [4-7].

The vibration signal can be measured and monitored using a

vibration measurement sensor installed on the motor of the air-

conditioning system [8], while the temperature, humidity, and

pressure can be monitored using a sensor installed inside the clean

room[9]. The data signals from the sensors can then be used to

diagnose defects using data analysis and AI-based diagnostic
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methods for experts and non-experts, respectively [10,11].

Defects can occur in various parts of the air-conditioning

system, such as the bearings, motors, fans, and high-efficiency

particulate air (HEPA) filters. Defects in bearings and motors are

mainly diagnosed using vibration sensors [12]. In contrast, the

replacement period of the HEPA filter is determined by measuring

the differential pressure inside the air-conditioning equipment [13].

Therefore, various sensors are required to diagnose defects in

complex clean rooms [14,15]. On the contrary, their usage is

limited in terms of cost and data processing capabilities with

regards to deep learning.

In this study, the differential pressure of the fan-filter unit in a

clean room was monitored and the differential pressure signal

caused by defects in the air-conditioner was learned by a deep

learning model to confirm the possibility of using a single sensor to

diagnose defects in a fan-filter unit.

2. Experiment Setup

2.1 Fan-filter Unit Defects

In this study, the defects of the fan-filter unit were divided into

bearing, filter, and motor defects. Bearing defects include bearing

element defects due to wear, cracking, and contamination. Bearing

wear or cracking can occur on the outer race, ball, and inner race.

When defects occur in bearing elements, defects occur in all

elements because the elements are interlocked. Thus, we focused

on bearing balls where all the elements are engaged.

In this study, to simulate bearing wear, 2 of the 10 ball

bearings (NTN 7202B angular ball bearing), were artificially

worn to 1 mm depth using a grinder. And, to simulate bearing

contamination defect, 0.4 g of aluminum oxide ( ) was

injected into bearings (NSK 6202 DDU deep groove ball

bearing) [16]. Two kinds of different ball bearings were used in

this case. Because there is no sealing in the 7202 bearings.

Therefore, the aluminum oxide escapes and does not contaminate

the bearing. In contrast, 6202 bearings were not decomposed and

were unsuitable for ball-wear bearings. Figs. 1(a) is normal ball,

1(b) is worn ball, 1(c) is normal bearing, 1(d) is contaminated

bearing, respectively.

The HEPA filter on the fan-filter unit affects the air purification

and must be replaced before the end of its useful life. It the air by

catching and retaining particulate, which eventually clogs the

filter. The total useful life of the HEPA filter can be determined

by measuring the differential pressure inside the air-conditioning

equipment. Data on contaminated filters were obtained using

filters that had passed their lifespans. Figs. 2(a) and 2(b) show a

normal and contaminated filter, respectively, including 1000×

magnifications obtained using a scanning electron microscope.

This study simulated a stator winding short circuit, which

causes electrical defects in the motor and affects the output speed

[17]. The stator winding fails due to an overload, an interlayer

short circuit caused by the breakdown of winding insulation,

weak insulation, or degradation of the winding, a winding ground

where the intersection part is short-circuited, and an

instantaneous overvoltage exceeding the internal voltage of the

winding. As the number of short-circuited turns of the

malfunction increases, the winding resistance also decreases in
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Fig. 1 Bearing defects of fan-filter unit: (a) Normal ball, (b) Worn

ball, (c) Normal bearing, (d) Contaminated bearing

Fig. 2 Filter defects of fan-filter unit: (a) Normal filter, (b)

Contaminated filter
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proportion, thereby increasing the current. Likewise, as the

number of short-circuited turns increases, the peak value of the

current increases. Induced electromotive force [V] is reduced.

Eqs. (1), (2) results in a change in motor RPM, in this

experiment, the speed change due to the defect of the motor was

simulated by changing the speed from the reference speed of the

motor from 1,040 RPM to 1,000 and 1,080 RPM using a speed

regulator. K is power, V is voltage, I is current,  is power

factor, N is Motor’s speed, T is torque.

(1)

 (2)

2.2 Experiment Configuration

A simple clean room was created to monitor the air-

conditioning fan-filter unit. A 750 × 800 × 1,000 mm frame was

constructed using 50 mm thick aluminum. As the outer walls of a

clean room have excellent chemical resistance, a 5 mm thick

panel was made using polyvinyl chloride (PVC), which is

commonly used in clean rooms [18]. The fan-filter unit was

connected to the ceiling of the simple clean room, and the airflow

was toward the floor. Square exhaust duct holes (200 × 200 mm)

were made on both sides to control the airflow. The size of the

fan-filter unit and output wind speed are 576 × 576 × 200 mm

and 0.25–0.45 m/s, respectively (Next Technology, NTFFU-575).

This experiment was conducted in an indoor environment with

no wind of about 33 m2 and the same atmosphere and pressure.

The measurement range and response time of the differential

pressure sensor are −300-+300 Pa and 10 ms, respectively

(Sensys). Figs. 3(a) and 3(b) show the schematic and actual

simple clean room, respectively. To check the tendency, the

location of measurement of the differential pressure sensor was

selected using Solidworks 2019, CFD. The differential pressure

sensor measurement position is set as shown in Fig. 4.

3. Experiment

3.1 Ball Bearing Comparison

In this study, the bearing defects were ball-wear defects and

contamination. Fig. 5 compares the internal differential pressure of

the fan-filter unit for the ball bearing at different motor speeds.

Similar internal differential pressures were observed for the

different bearings at motor speeds of 1,000, 1,040, and 1,080 RPM.

3.2 Differential Pressure by Defects

The types of defects in the fan filter unit were classified into

bearings, filters, and motor defects. Section 3 compared the raw

data of the differential pressure for each defect’s state to visualize

and determine the difference in differential pressure for each

defect.

ϕcos

K kw( ) 3 V I ϕcos×××=

N RPM( ) 974000 K T⁄×=

Fig. 3 Experiment setup: (a) Configuration of clean room simulation

system, (b) Actual configuration of clean room simulation

system

Fig. 4 Differential pressure measuring point

Fig. 5 Differential pressure of deep groove and angular ball

bearings
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3.2.1 Bearing Defects

This study classified the bearing defects of the fan filter unit into

ball wear defects and internal contamination. The differential

pressure inside the fan filter unit was compared with normal

bearings, ball wear defect bearings and contamination bearings at a

reference motor speed of 1,040 RPM. The average differential

pressure for the ball-wear, normal, and contaminated bearings was

162.24, 159.13, and 156.2 Pa, respectively. As shown in Fig. 6, it is

confirmed that the differential pressure signal caused by the bearing

defect is less different from the normal bearing, despite the large

defect that grinder grinds two out of ten balls and pollutes the inside.

3.2.2 Filter Defects

The internal differential pressure was measured for a new and

expired HEPA filter. The internal differential pressure of the FFU

increases because the pores of the used filter are clogged compared

to the normal filter. The average differential pressure for the

normal and contaminated filters was 159.13 Pa and 171.01 Pa,

respectively. The differences was 11.88 Pa (7.46%), and the results

are shown in Fig. 7.

3.2.3 Motor Defects

The internal differential pressure of the fan-filter unit at 1,000

and 1,080 RPM was measured using a speed regulator at a

reference speed of 1,040 RPM. The average value of the differential

pressures was 171.57 Pa, 159.13 Pa, and 150.71 Pa for 1,080,

1,040, and 1,000 RPM, respectively. The differences between the

average differential pressures from the reference speed of 1,040

RPM were 12.84 Pa and 8.42 Pa (8.06% and 5.29%) for 1,080 and

1,000 RPM, respectively. The results are shown in Fig. 8.

3.3 Deep Learning

In this study, there is a limit to judging the differential pressure data

obtained by each defect only by data. Thus, we used a deep learning

diagnostic technique to diagnose defects in the fan-filter unit. We used

raw data obtained from differential pressure sensors, reconstructing

500,000 data for each defect into 500*1,000 form, and using it for

deep learning experiments. Fig. 9 is shape of data by label.

3.3.1 Deep Learning Algorithms

The deep learning algorithms typically used to detect and

diagnose defects in a system are artificial neural network (ANN),

deep neural network (DNN), convolutional neural network (CNN),

and recurrent neural network (RNN). ANN algorithms are early

Fig. 6 Comparison of bearing defect

Fig. 7 Comparison of filter defect

Fig. 8 Comparison of motor defect

Fig. 9 Shape of data by label
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deep learning algorithms that mimic human neural network

principles and structures [19,20]. In ANN algorithms, structures

with two or more hidden layers are referred to as DNN algorithms

[21]. CNN, an algorithm derived from DNN, extracts data features

to identify patterns of features and uses compression and

computation processes to classify primarily image-based data [22].

RNN, an algorithm derived from DNN, has a recurrent structure. It

uses a circular structure to convey previous data values and is a

practical algorithm for continuous and repetitive signal data [23].

Because the defect signal was continuously detected once it

occurred, RNN algorithm was determined to be suitable for this

experiment. 

3.3.2 LSTM Algorithm

Recurrent neural network algorithms have an Exploding

Gradient or Vanishing Gradient problem where the next sequential

gradient increases or disappears rapidly as the data get longer [24].

The algorithm that complements this is short- and long-term

memory (LSTM) algorithm, as shown in Fig. 10. LSTM

algorithms is that solve the problem of RNN algorithm that cause

long data by passing only the necessary information to the next

time at the current time and deleting unnecessary information [25].

At time step t, the LSTM cell has an input vector . The

new cell state, , and the new output, , is made by information

from previous states,  and they send information to

the next cell at time step t+1. The output, , is determined by the

current input, , and the previous output, . LSTM has three

gates; forget gate (f), input gate (i) and output gate (o). The forget gate

determines which information is discarded or taken from the cell state

through the sigmoid layer, an S-shaped curve between zero and one.

Mathematically, the output  of forget gate is given by Eq. (3).

The  is the sigmoid activation function,  is the weight and 

is bias of the forget gate.

(3)

The input gate determines which new incoming information is

stored in the cell state. First, determine which values to update

through the sigmoid layer, and then create a new candidate vector

in tanh layer. The tanh layer, the hyperbolic tangent, is similar

shape to sigmoid layer, and is between minus one and one. The

output  of input gate is given by Eq. (4).  is the weight and 

is bias of the input gate. The sigmoid function output in input gate

is used to determine which information to update. In contrast, the

tanh function is used to determine what new information to add to

the cell state, . It is given by Eq. (5).

(4)

 (5)

If the information to be discarded from the previous gate and the

information to be updated are determined, update it during the cell

state update process. The cell state update is given by Eq. (6). The

cell state update is determined by the output of input gate and the

output of output gate.

 (6)

The output gate determines which information to the output.

First, input data is put in the sigmoid layer to determine the output

information, then cell state is put in the tanh layer, multiplied by

the output of the sigmoid layer set it as the output. The output  of

input gate is given by Eq. (7).  is the weight and  is bias of

the output gate. The output of LSTM, , is given by Eq. (8). The

 is transferred to the next step to repeat the above process. Fig.

11 is schematic diagram of LSTM cell structure.

(7)

(8)

In this study, the defect classification performance of the LSTM

model was confirmed when differential pressure data of random

defects were set as input data after learning differential pressure

ht 1–
xt,[ ]

Ct ht

Ct 1–
 and ht 1–

ht

xt ht 1–

ft

σ Wf bf

ft σ Wt ht 1–
xt,[ ] bf+⋅( )=

it Wi bi

C˜ t

it σ Wi ht 1–
xt,[ ] bi+⋅( )=

C˜ t Wc ht 1–
xt,[ ] bc+⋅( )tanh=

Ct ft ∗Ct 1–
it ∗Ct

˜
+=

it

Wo bo

ht

ht

ot σ Wo ht 1–
xt,[ ] bo+( )=

ht ot ∗ Ct( )tanh=

Fig. 10 Schematic of LSTM

Fig. 11 Schematic diagram of LSTM cell structure
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data by defect in the LSTM model.

3.3.3 Data Labeling and Deep Learning Model Building

Data labeling is the first step in deep learning model building.

As such, labels were assigned to the 1,000 RPM, normal state,

1,080 RPM, internal contaminated bearing, ball-wear bearing, and

contaminated filter data. For each label, 500 data and thereby, a

total of 3,000 data were obtained. Training, verification, and test

data were divided into 1,920, 480, and 600 data at a ratio of 64 : 16

: 20, respectively. The epoch number, batch size, hidden layers, and

dropout of the deep learning model were kept at the default setting

of 200, 64, 2, and 0.2, respectively. Fig. 12 is schematic of deep

learning model. We used GPU-based Tensorflow toolbox, GPU-

NVDIA GeForce RTX2060 SUPER, CPU-Intel(R) i5-8500, 16GB

memory for deep learning.

 

3.3.4 PCA and t-SNE Algorithms

Before conducting the deep learning experiment, clustering

between the data was confirmed using principal component

analysis (PCA) and t-SNE algorithms, which are low-dimensional

mapping techniques. PCA and t-SNE algorithms are a

dimensionality-reduction method that is often used to reduce the

dimensionality of large data sets, by transforming a large set of

variables into a smaller one [26] that still contains most of the

information in the large set. The PCA algorithm is an algorithm

that projects data between coordinates in one dimension and

creates a straight line in the area with the widest data distribution,

reducing data loss and clustering [27]. The t-SNE algorithm is a

clustering algorithm that finds orthogonal reference points that

preserve the variance to the maximum and lists them according to

the criteria [28]. Through these algorithm, clustering between data

can be visualized and confirmed when dimension is reduced. Fig.

13 is differential pressure data mapping result using dimension

reduction method.

3.3.5 Results

As result of the low-dimensional mapping, it can be seen that

the motor defect 1,080 RPM and the filter defect do not fully

cluster and overlap to some extent. Similarly, internal

contamination bearings, ball defect bearings, and steady state were

not fully clustered. Likewise, internal bearings and motor defects

1,000 RPM were not fully clustered. The similar result can be seen

in the confusion matrix. The results of the deep learning

experiment were randomly mixed and tested five times to evaluate

reliability. The defects were classified with an average accuracy of

87.2±2.60%. The deep learning results are presented using

confusion matrix, which is a specific table layout that allows easy

visualization of the performance of deep learning [28]. Fig. 14

Fig. 12 Schematic of deep learning model

Fig. 13 Differential pressure data mapping result using dimension

reduction method

Fig. 14 Generated confusion matrix
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shows the confusion matrix generated by the deep learning

experiment.

4. Conclusion

This study proposed a defect diagnosis system for the fan-filter

unit of a clean room. Defects in the fan-filter unit were divided into

bearing, filter, and motor defects and the internal fan-filter pressure

was measured for each defect. Bearing defects included ball wear

and contamination; filters were also contaminated, and motor

defects were simulated by changing the motor speed.

The acquired data were used to train a deep learning algorithm

to diagnose fan-filter unit defects because the measured data alone

were limited in diagnosing defects. Six labels were assigned in the

order of 1,000 RPM, steady state, 1,080 RPM, internal

contaminated bearing, ball-wear bearing, and contaminated filter.

Before the deep learning experiment, clustering between data was

confirmed using low-dimensional mapping techniques, PCA, and

t-SNE algorithms. The confusion matrix evaluated the average

value of the randomly mixed data five times to ensure reliability.

As a result, defects were classified with an average accuracy of

87.2±2.60%. This confirms the possibility of diagnosing defects in

clean-room fan-filter units using only differential pressure sensors.
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