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Recently, the demand for lightweight open-pore lattice structures with specific stiffness is increasing in many fields, such as

the aeronautical, automotive, mechanical and bone tissue engineering sectors. For each concrete application, there is a

need to predict its mechanical properties precisely and efficiently. There are several methods used to analyze the

mechanical properties of lattice structures. Among them, the asymptotic expansion homogenization method is a more

advantageous approach over the experimental, theoretical, and finite element methods, because it handles some of their

limitations such as the time-consuming process, size effect, and the high amount of computational resources needed.

Therefore, in this work, we use the asymptotic expansion homogenization method to perform a systematic parametric study

to calculate the effective stiffness of different open-pore lattice structures. In addition, the designed models were fabricated

using an SLA 3D printer, and the effective stiffness of the fabricated specimens was tested via UTM experiment to validate

the numerical results computed by the asymptotic expansion homogenization method. Consequently, it was proved that this

method is precise and effective for predicting the mechanical properties of lattice structures.
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1. Introduction

Lattice structures are concerning in different fields such as

biomedical engineering, automotive or aerospace industry, and

light weight design as they often exhibit versatile physical

properties. Lattice structures provide great strength-to-weight ratio,

significant permeability, and outstanding impact-absorption [1,2].

Several lattice cell compositions have been discovered in the past

few decades and the most widely studied are the simple-cubic,

body-centered cubic (BCC), face-centered cubic (FCC), and their

combination such as the simple-cubic body-centered and simple-

cubic faced-centered structures, in which their mechanical

properties has been investigated [3-8]. 

To determine the effective mechanical properties of those lattice

structures, there are several available methods such as:

experimental approaches, analytical modeling, and finite element

method [9-20]. However, each of the above approaches has its

limitations. For example, the experimental approach is a time-

consuming process, budgetary expensive and the results are highly

subjective due to the possibility of human error. In the theoretical

modeling, assumptions affect the solution, and it is difficult to use

for complex problems. In the case of finite element method

approach, the computational cost for complex problems is

expensive and the results can have some error if the periodic

boundary conditions cannot be implemented in the case of unit-cell

analysis. 

On the other hand, the AEH method is an alternative approach

that can handle the time-consuming process, the size effect

problem, and the high computational cost inconveniences that the

traditional methods possess [21,22]. This advantage comes from

the fact that AEH method establishes a relationship between the

macroscopic and microscopic field to predict the effective

mechanical properties of structures by analyzing the representative

volume element (RVE) which is the smallest volume or unit that

captures the microstructural features and behaviors of a whole

structure or material. More specifically, RVE is a unit volume

within a heterogeneous material that is selected to be statistically

representative of the entire composite structure [23,24]. 

AEH method has been successfully applied to a wide range of

different configurations and composition of composite materials [25-

27] and in contemporary engineering applications including

nanotechnologies [28,29], smart composite modeling [30,31], modeling

of thin network structures [32] thanks to its effectiveness to predict

mechanical properties precisely without high computational cost.

Meanwhile, additive manufacturing (AM) has gained attention

for the fabrication of lattice structures after appearance of rapid

prototyping. AM is a manufacturing process that involves creating

objects layer by layer from 3D model data. This layer-by-layer

manufacturing approach is very thankful because it is possible to

manufacture complex structures which could not be fabricated by

conventional manufacturing process. AM processes are

categorized as: binder jetting, direct energy deposition, material

extrusion, material jetting, power bed fusion, sheet lamination, and

vat photopolymerization [33]. Within the category of vat

photopolymerization process, the utilization of stereolithographic

(SLA) 3D printing is now becoming more accessible to end users

with the appearance of affordable printers on the market. SLA

printing technology allows the fabrication of prototypes and final

products with the main advantage to fabricate products precisely

with high resolution [34]. 

Therefore, the models in this study were manufactured using an

SLA 3D printer and we performed compressive experiments using

a universal testing machine (UTM) on the fabricates specimens to

validate the result obtained by the numerical model based on AEH

method and it was confirmed that this method is an advantageous

approach to calculate the effective mechanical properties of lattice

structures.

2. Design and Fabrication of Unit-cell

2.1 Design of Unit-cell

The unit-cells were designed using the software SolidWorks2020

(CAD software, Dassault Systèmes SolidWorks Corp., Waltham,

MA, USA). The lattice structures analyzed in this study are the SC

(Simple Cubic) truss, BCC (Body Centered Cubic) truss, FCC

(Face Centered Cubic) truss, SC-BCC (Simple Cubic-Body

Centered Cubic) truss, and SC-FCC (Simple Cubic-Face Centered

Cubic) truss. For the clear numerical comparison, every

characteristic dimension of specimens is set as dimensionless value

of 1.0 and the important proportions are depicted in Fig. 1 and

Table 1. Furthermore, in order that the porosity has no influence on

the effective stiffness of the structures, all the structures were

designed to have same porosity of 50%.

2.2 Fabrication of Unit-cell Using an SLA 3D Printer

The designed unit-cell were manufactured using an SLA 3D

printer (Form 3+, Formlabs Inc., Somerville, MA, USA) with a

laser power 250 mW and layer thickness 50 µm. By the software

PreForm (version 3.28.0), the models were sliced. The designed

unit-cell models were fabricated with clear resin for general

purpose and to minimize the influence of printing orientation, the

models were printed at 45-degree orientation [35]. The fabricated

unit-cells were washed in ethyl alcohol for 20 min in an ultrasonic
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cleaner and post-cued for 60 min with 1.25 mW/cm2 of 405 nm

LED light at 60oC. 

2.3 Prediction of Effective Stiffness by AEH Method

The AEH (Asymptotic Expansion Homogenization method)

[21,22] considers that the micro-mechanical behavior of a

heterogeneous material can be expressed by considering

periodicity within a unit-cell over the entire material as illustrated

in Fig. 2. The macroscopy model Ω, which represents the overall

structure is described by coordinates . On the other hand, the

repetitive unit-cell, which is the microscale model Y, is defined by

coordinates . 

 The parameter  establishes a relationship between the

characteristic dimensions of the microscale and macroscale. Since

there is a significant difference in size between these two scales,

the value of  needs to be relatively small ( )

(1)

The Y-periodicity of the microstructural heterogeneities refers to

the functional dependence on y, which repeats itself periodically

within the Y-period. This property is reflected in the elasticity

tensor D, where its components are Y-periodic in y. On the other

hand, at the macroscale level, the material is considered

homogeneous. Thus, the components of the elasticity tensor can be

represented as:

(2)

Nevertheless, in terms of the macroscale system of coordinates

x, the microstructural heterogeneity manifests itself in periods 

that are less than the characteristic dimension of the domain Y.

Following expression (1), the relationship is represented as:

(3)

in which  denotes the elastic properties corresponding to the

microscale model Y. Once the tensor  is calculated, we can

use it to determine the elasticity tensor  in coordinates 

for the macroscale model.

Then, the linear-elasticity problem can be mathematical stated as:

 in (4)

 in (5)

 in (6)

 (7)

 (8)

the components of the Cauchy stress tensor are denoted by 

while the strain tensor’s components in the macroscale coordinates

 are denoted by . The presence of repeated indices in the
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Fig. 1 Structural schematics and parameters of unit-cells: (a) SC

truss, (b) BCC truss, (c) FCC truss, (d) SC-BCC truss, (e) SC-

FCC truss (L: length of strand, D: diameter of strand)

Table 1 Dimensionless value for the parameters of unit-cells 

Unit-Cell
Dimensionless value for the parameters

L1 L2 L3 D1

SC truss 1.00 1.00 1.00 0.57

BCC truss 1.00 1.00 1.00 0.37

FCC truss 1.00 1.00 1.00 0.24

SC-BCC truss 1.00 1.00 1.00 0.31

SC-FCC truss 1.00 1.00 1.00 0.22

Fig. 2 Schematic of asymptotic homogenization method
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preceding equations signifies that we are performing a summation

over the three coordinates.

Taking into account the presence of two different scales that

characterize the material behavior at the macroscale Ω and

microscale Y, the displacement field is approached employing

the following asymptotic expansion with respect to the

parameter :

 (9)

Since we are dealing with two different coordinate systems, 

and , in the derivation equations, we can consider the following

chain rule expansion:

(10)

The chain rule of the precedent Eq. (10) can be implemented

into Eq. (9), consequently, we determine the components of strain

and stress:

(11)

 (12)

Where:

 (13)

 Then, replacing Eq. (9) within Eq. (5) which is the strain-

displacement relationship and implementing the result in Eq. (6),

we obtain an equation that relies on :

(14)

As Eq. (14) is applicable for every given , every

coefficient of the powers of  is zero. Therefore, we can express

the problem as:

(15)

(16)

(17)

If we consider the Dirichlet and Neumann boundary conditions

in Eq. (7) along with Eq. (8), boundary conditions can be

expressed as follow: 

 in (18)

 in (19)

As Eq. (16) establishes the relationship between microscale and

macroscale stresses, the perturbation displacement  in the

microscale could be represented as follow:

(20)

where integration constants are represented by  in ,

typically assumed to be zero, and  denotes the Y-periodic

components of the field tensor χ. Then, the field tensor χ is

determined by solving the variational problem:

 

  (21)

Where  represents every Y-periodic continuous and enough

regular functions with zero average value in Y.

Replacing Eq. (20) using relation (17) and taking into account

the Y periodicity of  in y,  can be exclusively equal to

zero as follow:

 (22)

The mean value of a Y-periodic function ф(x,y) within the

domain Y can be described as:

(23)

The homogenized effective elastic properties are attained taking

into account the suitable boundary conditions described by the

macroscale mathematical statement and adopting the averaging

operator as:

 (24)
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1 
x +=

ũi
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These equations enable the calculation of stress and strain values

at any specified point the macroscale model for a heterogeneous

sample. More details are given by Pinho-da-Cruz et al. [21].

Then, it is possible to determine the effective elasticity

properties of the scaffolds from the constitutive matrix’s inverse,

which refers to the homogenized compliance matrix .

     (27)

where E11 and E22 and E33 are the elastic modulus along the

orthogonal directions. G12 and G23 are the shear modulus and the

Poisson’s ratios associated with , .

3. Results

3.1 Fabrication of Structures Using an SLA 3D Printer

To validate the numerical result calculated by AEH method, all

the structures were fabricated using an SLA 3D printer as shown in

Fig. 3. The unit-cells were fabricated to possess external length of

10 mm, width of 10 mm in and height of 10 mm following the

ratio depicted in Table 1. 

The porosity of each fabricated unit-cell was measured and

averaged from 5 samples, and it was confirmed that all the unit-

cells had similar porosity of 50% as depicted in Fig. 4.

3.2 Effective Stiffness Calculated by AEH Method and Using

UTM Equipment

The effective elastic modulus calculated by AEH method of the

unit-cell SC truss, BCC truss, SC-BCC truss, FCC truss, and SC-

FCC truss is depicted in Fig. 5 and Table 2.

The fabricated unit-cells were tested using the universal testing

machine equipment (MTS-E42) under a compression load of 5 kN

using 10% strain at a constant strain rate of 1 mm/min. The

compressive stiffness results of the unit-cell obtained from the

UTM were calculated as the average of five specimens and results

are depicted in Fig. 5 and in Table 3. 
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Fig. 3 Optical images of fabricated unit-cells by SLA 3D printer: (a)

SC truss, (b) BCC truss, (c) FCC truss, (d) SC-BCC truss, (e)

SC-FCC truss

Fig. 4 Measured porosity of fabricated unit-cells

Fig. 5 Normalized effective elastic modulus results of the different

types of unit-cells by AEH method and UTM experiment 
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4. Discussion

This study aimed to evaluate the effective stiffness of different

lattice structures using a numerical model based in asymptotic

homogenization method. 

To get rid of the influence of the porosity in the effective

stiffness, we first confirmed that the porosity of the SC truss, BCC

truss, SC-BCC truss, FCC truss, and SC-FCC specimens were

fabricated very similar to that of the designed models as depicted

in Fig. 4. The porosity relative error of the SC truss, BCC truss,

SC-BCC truss, FCC truss, and SC-FCC truss specimens were

calculated to be 2.29, 0.26, 3.96, 1.30, and 6.49% respectively.

This porosity error could result from material residual between the

strand and the residual of material used to support the specimens

when they were printed.

With regard to effective stiffness calculated by AEH method, the

results agree with previous reported studies where the mechanical

properties of the SC truss, BCC truss, SC-BCC truss, FCC truss,

and SC-FCC truss structures were studied using different methods

such as analytical, experimental and FEM analysis [3-8]. In

addition, to validate the numerical results based on AEH method in

this study, the UTM experiment was carried out. 

To clearly compare the results obtained by AEH method and

UTM experiment, the results were characterized in term of

normalized elastic modulus. The normalized elastic modulus was

determined in function of the bulk material elastic modulus and the

elastic modulus calculated by AEH method and UTM experiment,

and it can be expressed as:

(28)

where Enormalized is the normalized elastic modulus,  is the

effective elastic modulus calculated by AEH method and UTM

experiment and  is the elastic modulus of the bulk material.

Fig. 5 summarizes the numerical results calculated by AEH

method and experiments expressed as normalized effective elastic

modulus and it is observed that the results attained by experiments

exhibit similar trend as the numerical results based on AEH

method. 

The numerical elastic modulus of the SC truss unit-cell in X

direction was analyzed to have 1.38 times greater stiffness than that

of the experiment result, superior to 1.26 times in Y direction and

1.39 in Z direction. The BCC truss unit-cell in X direction was

analyzed to have 1.13 times greater stiffness than that of the

experiment result, 1.06 time higher in Y direction and 1.11 in Z

direction. The FCC truss unit-cell in X direction was analyzed to

have 1.07 times higher stiffness than that of the experiment result,

same stiffness in Y direction and 1.08 higher in Z direction. The

SC-BCC truss unit-cell in X direction was analyzed to have 1.07

times higher stiffness than that of the experiment result, over 1.03

times in Y direction and 1.09 in Z direction. The SC-FCC truss

unit-cell in X direction was analyzed to have 1.23 times greater

stiffness than that of the experiment result, 1.09 time higher in Y

direction and 1.24 in Z direction. The average elastic modulus

relative error in all directions between the AEH method and UTM

experiment of the SC truss, BCC truss, FCC truss, SC-FCC truss

and SC-FCC truss unit-cell was calculated to be 25.4, 8.9, 4.6, 5.7,

and 15.3% respectively. 

The discrepancy observed among experiments and numerical

analysis results can be attributed to defects generated during the

fabrication process and because in this study the compressive test

was performed to a single unit-cell without having periodic

arrangement of several unit-cells. Wu et al. investigated the

response of material anisotropy and size effect on the mechanical

properties of three types of 3D cellular structures and they reported

that all the three types of structures exhibit varying levels of size

effect dependency [36]. In our study, as shown in Fig. 5, the

significant difference in elastic modulus observed in SC truss unit-

cell compared to the other structures between simulation and

experiment could be attributed primarily to the size effect, which

level of size effect dependency is more prominent in the SC truss

unit-cell. And in the same way as in the other structures, the

structural integrity of the SC unit-cell is susceptible to structural

defects or imperfections during fabrication process, which

influence its mechanical behavior. Therefore, the combined

Enormalized Eeff Ebulk=

Eeff

Ebulk

Table 2 Normalized effective stiffness of unit-cell by AEH method

Unit-Cell
Direction

X Y Z

SC truss 0.307 0.307 0.307

BCC truss 0.146 0.145 0.145

FCC truss 0.188 0.188 0.188

SC-BCC truss 0.203 0.203 0.203

SC-FCC truss 0.208 0.208 0.208

Table 3 Normalized effective stiffness of open-pore unit-cell by

UTM experiment

Unit-Cell
Direction

X Y Z

SC truss 0.223±0.009 0.244±0.002 0.220±0.006 

BCC truss 0.129±0.005 0.138±0.002 0.131±0.002

FCC truss 0.175±0.007 0.188±0.004 0.175±0.010

SC-BCC truss 0.191±0.005 0.197±0.008 0.187±0.007

SC-FCC truss 0.169±0.004 0.191±0.007 0.168±0.007
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influence of these two conditions could lead to bigger discrepancy

between SC truss unit-cell numerical results and experimental

results compared with the other structures.

5. Conclusion

We confirmed that the asymptotic expansion homogenization

method is an accurate and efficient approach to predict the

effective mechanical properties of lattice structures. Using this

method, we analyzed several lattice structures and combining with

additive manufacturing, these structures were fabricated.

Moreover, the AEH method results were validated by UTM

experiments, and it was found that experimental results are similar

to the numerical results based on AEH method.
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