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A circular flexure hinge is a core element for force transmission and relative motion of precision stages used in

semiconductor processes. When designing a circular flexure hinge, calculation formulas for axial and rotational compliance

are essential. However, in the case of axial compliance, results of the existing calculation formulas have significant

differences from reliable finite element analysis results. In this study, calculation formulas for axial compliance of the circular

flexure hinges were derived based on stress distribution phenomenon. Comparison with finite element analysis results

confirmed that the newly developed calculation formulas were more accurate than existing ones. It is anticipated that these

enhanced formulas will lead to more precise designs, ultimately reducing both time and costs in research and industry.
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1. Introduction

Precision stages widely used in semiconductor etching

processes use flexure hinges as connecting elements for rotational

motion [1-3]. Conventional hinges, which are joints for relative

rotational motion, have backlash and use lubricants, so they are not

suitable for semiconductor processes where precision and

contaminants significantly affect yields. However, the flexure

hinge is free from these problems because it is made of a

monolithic metal structure and is therefore widely adopted in

semiconductor processes. Many studies have been conducted for a

long time to calculate the axial compliance and bending

compliance values   of flexure hinges. Since most flexure hinges,

including circular and elliptical notch flexure hinges, can be

viewed as beams whose cross-sectional shape changes

continuously in the axial direction, most previous studies have

used the Timoshenko-Ehrenfest beam theory for analysis [4,5].

There have been studies by Paros and Weisbord [6], Wu and Zhou

[7], and Lobontiu [8] to calculate the compliance of 1-D circular

flexure hinges (see Fig. 1). Although the forms of the compliance

calculation equations developed in these studies are different, we

found that they are the same equations when the terms in their

equations were expanded and compared in this study. This is

consistent with the diagnosis in the paper by Yong et al. [9] that the

calculation results of these equations are the same, and the reason is

that these equations are derived based on the same Timoshenko-
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Ehrenfest beam theory. It is noteworthy that the Paros-Weisbord

simplified formulas for the rotational compliance are more similar to

the finite element analysis (FEA) results than the analytically derived

full equations. In addition, Smith et al. [10], Tseytlin [11], and

Schotborgh et al. [12] presented rotational compliance formulas for

1-D circular flexure hinges, but they were excluded from the

comparison because this study deals with axial compliance. 

Yong et al. [9] presented an accurate empirical formula for

calculating axial and rotational compliance for the 1-D circular

flexure hinge in the range of t/R of 0.1 to 0.25, and pointed out that

when an axial load is applied to a circular flexure hinge,

deformation occurs not only at the notch but also around it, but

there is no compliance calculation formula that takes this into

account. Li et al. [13] pointed out that a flexible joint with a

circular flexure hinge consists of three parts: a notched segment, a

segment close to the notch (as much as R), and a segment further

away. They obtained an empirical formula for the compliance of a

circular flexure hinge by regression to an exponential function

from the deformation value calculated by finite element analysis

minus the deformation value of the non-notched segment.

We recognized that although a lot of deformation occurs in the

region close to the notch, as commonly mentioned by Yong et al.

[9] and Li et al. [13], there is no compliance calculation formula

that takes this into account. Therefore, our research started with the

aim of making theoretical formulas to calculate compliance more

accurately by creating a reasonable phenomenon-based model for

the region close to the notch.

Meanwhile, studies on the compliance calculation method of 2-D

circular flexure hinges have been relatively less frequent than those

of 1-D circular flexure hinges, and the compliance calculation

formulas of 2-D circular flexure hinges have been derived only by

Paros and Weisbord [6] and Lobontiu [8]. Although the compliance

calculation formulas developed in these studies have different

formula forms, we found that they are the same formulas when the

terms were expanded and compared in our study.

Since there was a significant discrepancy between the results

obtained from theoretical formulas in previous studies and those

obtained from finite element analysis, particularly regarding the

axial flexibility of the flexure hinge, this study aims to achieve the

following detailed objectives in order to derive more accurate

calculation formulas for axial compliance. 

First, reasonable assumptions for compliance calculation are

established through the stress distribution that occurs when an axial

load is applied to the flexure hinge.

Second, phenomenon-based theoretical formulas are derived

based on the assumptions.

Third, the accuracy of the newly developed theoretical formulas

is verified by comparing them with existing theoretical formulas,

and FEA results.

Section 1 is the introduction. Section 2 describes the structure of

circular flexure hinges and existing compliance calculation

methods. Section 3 derives new theoretical formulas based on the

phenomenon caused by axial load. Section 4 verifies the developed

formulas through finite element analysis. And Section 5 presents

the results and implications of the research.

2. Structure and Compliance of Circular Flexure Hinges

for Ultra-precision Stages 

Ultra-precision stages are mainly used for position control of

masks in semiconductor etching processes, and they are in charge

of micro-displacement control in a dual motion control consisting

of large displacement and micro-displacement. The flexure hinge

operates as a precision revolute joint without backlash and micro-

dust due to the absence of lubricant, so it is adopted as an essential

component for precision stages.

Circular flexure hinges can be divided into 1-D circular flexure

hinges with one rotational degree of freedom and 2-D circular flexure

hinges with two rotational degrees of freedom, as shown in Fig. 1. 

Theoretically, a flexure hinge has a compliance of six

components (3 translational + 3 rotational), but the following two

components of compliance of a circular flexure hinge are

important. The compliance in the axial direction, where the force is

transmitted, should be low, and the compliance in the rotational

direction, where the intended rotation occurs, should be high.

Therefore, in this study, only the axial and rotational compliance of

Fig. 1 Circular flexure hinges
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the flexure hinge are considered. The names and coordinates of the

variables for the development of the theory are shown in Fig. 2.

In this study, the Euler-Bernoulli beam theory was utilized to

develop the equations for the following reasons: Since the load

changes over time are not abrupt, the effects of rotational inertia

can be disregarded. Additionally, for calculating axial and

rotational compliance, shear deformation is negligible. When the

effects of shear deformation and rotational inertia are excluded

from the Timoshenko-Ehrenfest beam theory, it simplifies to the

Euler-Bernoulli beam theory.

The compliance of a flexure hinge is based on the following two

equations.

(1)

(2)

where .  and  represent the deformation length and

deformation angle, respectively, and  and  represent the force

and moment, respectively. The axial compliance  and the

rotational compliance  are calculated as follows [14].

(3)

(4)

where  is the modulus of elasticity,  is the area, and  is the

moment of inertia. In Fig. 2,  is as follows:

(5)

With the above basic mechanical equations, previous

researchers including Paros and Weisbord [6], Wu and Zhou [7],

and Lobontiu et al [8] derived compliance calculation formulas.

The formulas are included in Eqs. (A1)-(A14) in the appendix

since they are used for comparison. The subscripts are added in the

order of ‘compliance direction, degrees of freedom, author’, and

the formulas are listed in the order of ‘degrees of freedom,

compliance direction, author’ for easy comparison. In addition, the

simplified formula of Paros has ‘S’ at the end of the subscript.

Since static linear structural analysis by FEA numerically produces

only stress and deformation values under specific loads and

constraints, additional application of Eqs. (1) and (2) is required to

obtain compliance. In this study, the conditions for FEA are as follows:

the left side of the flexure hinge is fixed, and the axial load and

bending moment are applied to the right side, respectively. The

thickness t of the hinge neck is 1 mm, the width b of the 1-D circular

flexure hinge is 10 mm, and the selected material is A7075-T6 with

the elastic modulus of 73.013 GPa. The load condition was set so that

the maximum stress at the neck of the hinge is within the allowable

stress obtained by dividing the yield stress of the material by a safety

factor of 2. To obtain the rotational compliance, one end of the shaft

was fixed, and a moment (100 N mm for a 1-D circular flexure hinge

and 10 N mm for a 2-D flexure hinge) was applied to the opposite end.

In addition, to obtain the compressive compliance, one end of the shaft

was fixed in the same way, and a force (1000 N for a 1-D circular

flexure hinge and 100 N for a 2-D flexure hinge) was applied to the

opposite end.

Through Figs. 3 and 4, it is shown that the differences between

the calculated values and the finite element analysis values for the

rotational compliance are not large, but the differences are large for

the axial compliance. Since it is judged that the calculation formulas

for the axial compliance need to be improved, and new calculation

formulas for the axial compliance are derived in this study. 

3. Derivation of New Compliance Formulas for Circular

Flexure Hinges

The discrepancy between the results of the theoretical axial

compliance calculations and the finite element analysis was

examined through an investigation of stress distribution. The stress

distribution under axial loading is illustrated in Fig. 5. The stress

contour (iso-stress line or surface) is approximately circular and

approximately perpendicular to the outline of circular flexure

hinge. This phenomenon is clear for the 1-D circular flexure hinge

and less clear for the 2-D circular flexure hinge.

The existing theoretical formulas were obtained by

integrating only up to the end of the notch part of the hinge, but

the actual stress is widely distributed up to the shank part. It

was assumed that a more accurate axial compliance calculation

formula could be obtained by deriving the formula considering

the shank part. The following two assumptions were made

based on the insight obtained from the stress contour shown in
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Fig. 2 Dimensions and coordinates of the circular flexure hinge 
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Fig. 5: First, the stress contour is circular and intersects the

outline of the hinge at a right angle. Second, the stress acts

perpendicular to the contour plane.

The free body diagram drawn by considering the latter first is as

shown in Fig. 6. As can be seen in Figs. 6(a), the stress acting

perpendicular to the stress contour can be projected as a stress

perpendicular to the plane, as shown in 6(b).

Since the shape of the stress contour (dotted line) in Figs. 7(a) is

expressed according to the angle , the corresponding geometry for

one stress contour is depicted in 7(b).

The equation of the circle forming the outline of a circular

flexure hinge is:

(6)

Therefore, any point  on this circle can be expressed as

follows:

(7)

(8)

Also, the equation of the tangent line at the point( ) on this

circle is as follows.
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Fig. 3 Comparison between existing methods and FEA results for

the 1-D circular flexure hinge

Fig. 4 Comparison between existing methods and FEA results for

the 2-D circular flexure hinge

Fig. 5 Stress distribution of a 1-D circular flexure hinge when

axially extended
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(9)

Let the intersection point of this tangent line and the x-axis

( ) be (c, 0), then

(10)

This intersection point (c, 0) becomes the center of the circle

forming the stress contour, and the equation of the stress contour

circle is as follows (see Fig. 7).

(11)

Since the stress contour circle is assumed to be perpendicular to

the outline of the hinge, the height  of the arc can be simply

expressed as follows by a geometric relationship.

(12)

Considering that deformation occurs up to the stress contour area

of   Fig. 7(a), the axial compliance calculation formula of Eq. (3)

needs to be corrected. Therefore, if the stress distribution is projected

as in Fig. 6, while the area  is the same as in the existing formula,

the variable of integration should be replaced from  to .

(13)

Therefore, by replacing  in Eq. (3) with  in Eq. (13),

we can obtain the following result.

(14)

The axial compliance formulas for the 1-D flexure hinge and 2-
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Fig. 6 Free body diagram at a certain stress contour Fig. 7 Stress contour and geometry



52 / January 2025 한국정밀공학회지  제 42권 제 1호

D flexure hinge obtained by calculating the integral of the above

equation are Eqs. (15) and (16), respectively.

(15)

(16)

where .

4. Verification of the Newly Developed Formulas by Finite

Element Analysis

Finite element analysis is performed to verify the performance of

the newly developed axial compliance formulas of Eqs. (15) and (16).

The circular flexure hinge used in the finite element analysis was

set to have a length of one end of the shaft excluding the notch of

120 mm, and the height (at 1-D circular flexure hinge) or diameter

(at 2-D circular flexure hinge) of the shaft was set to 101 mm,

which was set to a sufficiently large value compared to the neck of

the notch so that the deformation of the shank did not affect the

overall analysis results. The thickness of the neck of the notch was

fixed to 1 mm, and the radius of the circular notch was determined

so that R/t was 2, 5, 10, 20, and 50. The grid was created so that the

size of one side of the grid was smaller than the thickness t of the

hinge.

The results of comparing the existing methods and the new

method developed in this study with the finite element analysis

results are shown in Tables 1 and 2. In Figs. 8 and 9, the percent

errors compared with finite element analysis are shown for the 1-D

and 2-D circular flexure hinges.

The performance of the newly developed method was evaluated

by the percentage error to see how close the results by the
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developed compliance formulas are to the finite element analysis

results. The results are as follows: For the 1-D circular flexure

hinge, the developed calculation formulas are 10.5 to 31.1% closer

to the finite element analysis results across all values of R/t. For the

2-D circular flexure hinge, the formulas are 0.48 to 25.4% closer to

the finite element analysis results for all values of R/t. These

findings demonstrate that the newly developed formulas provide

superior compliance calculation performance compared to existing

formulas. Furthermore, the new formulas are simpler in form,

enhancing their ease of use.

5. Conclusion

Firstly, we found a significant discrepancy between the axial

compliance values of the circular flexure hinge obtained from

existing theoretical formulas and those from finite element

analysis (FEA). Secondly, reasonable assumptions were

established for compliance calculation based on the stress

distribution under axial load: the stress contour is circular and

meets the outline of the hinge at a right angle, and the stress acts

normally to the contour plane. Thirdly, axial compliance

formulas for both 1-D and 2-D circular flexure hinges, presented

in Eqs. (15) and (16), were derived based on these assumptions.

Fourthly, the superiority of the developed theoretical formulas

over existing ones was confirmed by evaluating the percent error

relative to FEA results. Lastly, the newly proposed compliance

formulas for circular flexure hinges are anticipated to be highly

beneficial for industrial applications due to their accuracy and

simplicity, potentially reducing both time and cost in design

processes.

REFERENCES

1. Moon, J.-H., Pahk, H. J., Lee, B.-G., (2011), Design, modeling,

and testing of a novel 6-DOF micropositioning stage with low

profile and low parasitic motion, International Journal of

Advanced Manufacturing Technology, 55(1-4), 163-176. 

2. Shin, H., Moon, J.-H., (2014), Design of a double triangular

parallel mechanism for precision positioning and large force

generation, IEEE/ASME Transactions on Mechatronics, 19(3),

862-871.

3. Yong, Y. K., Moheimani, S. O. R., Kenton, B. J., Leang, K. K.,

(2012), Invited review article: high-speed flexure-guided

nanopositioning: mechanical design and control issues, Review

of Scientific Instruments, 83(12), 121101. 

4. Moon, J.-H., (2022), Analysis of the cylindrical flexure hinges

with circular notches, Journal of the Korean Society for Precision

Engineering, 39(2), 151-157.

5. Shin, H.-P., Moon, J.-H., (2023), Analysis on elliptic and

parabolic 2-DOF flexure hinges for spatial positioning stages,

Journal of the Korean Society for Precision Engineering, 40(3),

229-236.

6. Paros, J. M., Weisbord, L., (1965), How to design flexure hinges,

Machine Design, 37(8), 151-156. 

7. Wu, Y., Zhou, Z., (2002), Design calculations for flexure hinges,

Review of Scientific Instruments, 73(9), 3101-3106. 

8. Lobontiu, N., (2002), Compliant mechanisms: design of flexure

hinges, CRC press. 

9. Yong, Y. K., Lu, T.-F., Handley, D. C., (2008), Review of

circular flexure hinge design equations and derivation of

empirical formulations, Precision Engineering, 32(2), 63-70. 

10. Smith, S. T., Chetwynd, D. G., Bowen, D. K., (1987), Design

and assessment of monolithic high precision translation

mechanisms, Journal of Physics E, 20(8), 977-983.

Table 1 Axial compliance values of the 1-D circular flexure hinge (unit: m/N)

R/t 2 5 10 20 50

Full formula (Paros, Wu, Lobontiu) 3.551E-03 6.764E-03 1.057E-02 1.607E-02 2.713E-02

Simplified formula (Paros) 2.565E-03 6.101E-03 1.009E-02 1.572E-02 2.691E-02

New formula 5.932E-03 9.475E-03 1.348E-02 1.915E-02 3.036E-02

FEA result 1.023E-02 1.276E-02 1.556E-02 2.051E-02 2.994E-02

Table 2 Axial compliance values of the 2-D circular flexure hinge (unit: m/N)

R/t 2 5 10 20 50

Full formula (Paros, Lobontiu) 3.357E-02 5.745E-02 8.375E-02 1.204E-01 1.923E-01

Simplified formula (Paros) 3.874E-02 6.125E-02 8.662E-02 1.225E-01 1.937E-01

New formula 4.686E-02 6.735E-02 9.129E-02 1.260E-01 1.960E-01

FEA result 5.222E-02 6.789E-02 9.007E-02 1.251E-01 1.953E-01



54 / January 2025 한국정밀공학회지  제 42권 제 1호

11. Tseytlin, Y. M., (2002), Notch flexure hinges: an effective theory,

Review of Scientific Instruments, 73(9), 3363-3368. 

12. Schotborgh, W., Kokkeler F., Trangter, H., van Houten, F.,

(2005), Dimensionless design graphs for flexure elements and a

comparison between three flexure elements, Precision

Engineering, 29(1), 41-47.

13. Li, T.-M., Zhang, J.-L., Jiang, Y., (2015), Derivation of empirical

compliance equations for circular flexure hinge considering the

effect of stress concentration, International Journal of Precision

Engineering and Manufacturing, 16(8), 1735-1743.

14. Crandall, S. H., Dahl, N. C., Lardner, T. J., Sivakumar, M. S.,

(2012), An introduction to mechanics of solids: (In SI Units), 3rd

Ed., McGraw-Hill.

APPENDIX

A.1 Compliance Formulas for the 1-D Circular Flexure

Hinge

(1) Axial compliance formulas for the 1-D circular flexure hinge 

by Paros 

(A1)

where , 

by Lobontiu

(A2)

by Wu

(A3)

where 

(2) Rotational compliance formulas for the 1-D circular flexure hinge

by Paros

(A4)

where , 

by Lobontiu

(A5)

by Wu

(A6)

where  

A.2 Compliance Formulas for the 2-D Circular Flexure Hinge

(1) Axial compliance formulas for the 2-D circular flexure hinge

by Paros 

(A7)
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